Feb
23
2017
--

AirMap raises $26 million to manage air traffic as drone use surges

battle-drones Lower airspace isn’t crowded with drones quite yet. But as drones become more pervasive, a startup called AirMap is building software and systems to help drone operators fly only where it’s safe and legal to do so. The task will prove completely different from that of managing airliners as we do today, says AirMap CEO and cofounder Ben Marcus who is also serving as the co-chair for… Read More

Feb
22
2017
--

Webinar Thursday, February 23, 2017: Troubleshooting MySQL Access Privileges Issues

Troubleshooting MySQL Access Privileges

Troubleshooting MySQL Access PrivilegesPlease join Sveta Smirnova, Percona’s Principal Technical Services Engineer, as she presents Troubleshooting MySQL Access Privileges Issues on
February 23, 2017 at 11:00 am PST / 2:00 pm EST (UTC-8).

Do you have registered users who can’t connect to the MySQL server? Strangers modifying data to which they shouldn’t have access?

MySQL supports a rich set of user privilege options and allows you to fine tune access to every object in the server. The latest versions support authentication plugins that help to create more access patterns.

However, finding errors in such a big set of options can be problematic. This is especially true for environments with hundreds of users, all with different privileges on multiple objects. In this webinar, I will show you how to decipher error messages and unravel the complicated setups that can lead to access errors. We will also cover network errors that mimic access privileges errors.

In this webinar, we will discuss:

  • Which privileges MySQL supports
  • What GRANT statements are
  • How privileges are stored
  • How to find out why a privilege does not work properly
  • How authentication plugins make difference
  • What the best access control practices are

To register for this webinar please click here.

InnoDB TroubleshootingSveta Smirnova, Principal Technical Services Engineer

Sveta joined Percona in 2015. Her main professional interests are problem-solving, working with tricky issues, bugs, finding patterns that can solve typical issues quicker, and teaching others how to deal with MySQL issues, bugs and gotchas effectively. Before joining Percona, Sveta worked as Support Engineer in the MySQL Bugs Analysis Support Group at MySQL AB-Sun-Oracle. She is the author of book “MySQL Troubleshooting” and JSON UDF functions for MySQL.

Feb
22
2017
--

Percona Monitoring and Management (PMM) Graphs Explained: MongoDB with RocksDB

Percona Monitoring and Management

Percona Monitoring and ManagementThis post is part of the series of Percona’s MongoDB 3.4 bundle release blogs. In mid-2016, Percona Monitoring and Management (PMM) added support for RocksDB with MongoDB, also known as “MongoRocks.” In this blog, we will go over the Percona Monitoring and Management (PMM) 1.1.0 version of the MongoDB RocksDB dashboard, how PMM is useful in the day-to-day monitoring of MongoDB and what we plan to add and extend.

Percona Monitoring and Management (PMM)

Percona Monitoring and Management (PMM) is an open-source platform for managing and monitoring MySQL and MongoDB, developed by Percona on top of open-source technology. Behind the scenes, the graphing features this article covers use Prometheus (a popular time-series data store), Grafana (a popular visualization tool), mongodb_exporter (our MongoDB database metric exporter) plus other technologies to provide database and operating system metric graphs for your database instances.

The mongodb_exporter tool, which provides our monitoring platform with MongoDB metrics, uses RocksDB status output and optional counters to provide detailed insight into RocksDB performance. Percona’s MongoDB 3.4 release enables RocksDB’s optional counters by default. On 3.2, however, you must set the following in /etc/mongod.conf to enable this:

storage.rocksdb.counters: true

 .

This article shows a live demo of our MongoDB RocksDB graphs: https://pmmdemo.percona.com/graph/dashboard/db/mongodb-rocksdb.

RocksDB/MongoRocks

RocksDB is a storage engine available since version 3.2 in Percona’s fork of MongoDB: Percona Server for MongoDB.

The first thing to know about monitoring RocksDB is compaction. RocksDB stores its data on disk using several tiered levels of immutable files. Changes written to disk are written to the first RocksDB level (Level0). Later the internal compactions merge the changes down to the next RocksDB level when Level0 fills. Each level before the last is essentially deltas to the resting data set that soon merges down to the bottom.

We can see the effect of the tiered levels in our “RocksDB Compaction Level Size” graph, which reflects the size of each level in RocksDB on-disk:

RocksDB

Note that most of the database data is in the final level “L6” (Level 6). Levels L0, L4 and L5 hold relatively smaller amounts of data changes. These get merged down to L6 via compaction.

More about this design is explained in detail by the developers of MongoRocks, here: https://www.percona.com/live/plam16/sessions/everything-you-wanted-know-about-mongorocks.

RocksDB Compaction

Most importantly, RocksDB compactions try to happen in the background. They generally do not “block” the database. However, the additional resource usage of compactions can potentially cause some spikes in latency, making compaction important to watch. When compactions occur, between levels L4 and L5 for example, L4 and L5 are read and merged with the result being written out as a new L5.

The memtable in MongoRocks is a 64mb in-memory table. Changes initially get written to the memtable. Reads check the memtable to see if there are unwritten changes to consider. When the memtable has filled to 100%, RocksDB performs a compaction of the memtable data to Level0, the first on-disk level in RocksDB.

In PMM we have added a single-stat panel for the percentage of the memtable usage. This is very useful in indicating when you can expect a memtable-to-level0 compaction to occur:

Above we can see the memtable is 125% used, which means RocksDB is late to finish (or start) a compaction due to high activity. Shortly after taking this screenshot above, however, our test system began a compaction of the memtable and this can be seen at the drop in active memtable entries below:

RocksDB

Following this compaction further through PMM’s graphs, we can see from the (very useful) “RocksDB Compaction Time” graph that this compaction took 5 seconds.

In the graph above, I have singled-out “L0” to show Level0’s compaction time. However, any level can be selected either per-graph (by clicking on the legend-item) or dashboard-wide (by using the RocksDB Level drop-down at the top of the page).

In terms of throughput, we can see from our “RocksDB Write Activity” graph (Read Activity is also graphed) that this compaction required about 33MBps of disk write activity:

On top of additional resource consumption such as the write activity above, compactions cause caches to get cleared. One example is the OS cache due to new level files being written. These factors can cause some increases to read latencies, demonstrated in this example below by the bump in L4 read latency (top graph) caused by the L4 compaction (bottom graph):

This pattern above is one area to check if you see latency spikes in RocksDB.

RocksDB Stalls

When RocksDB is unable to perform compaction promptly, it uses a feature called “stalls” to try and slow down the amount of data coming into the engine. In my experience, stalls almost always mean something below RocksDB is not up to the task (likely the storage system).

Here is the “RocksDB Stall Time” graph of a host experiencing frequent stalls:

PMM can graph the different types of RocksDB stalls in the “RocksDB Stalls” graph. In our case here, we have 0.3-0.5 stalls per second due to “level0_slowdown” and “level0_slowdown_with_compaction.” This happens when Level0 stalls the engine due to slow compaction performance below its level.

Another metric reflecting the poor compaction performance is the pending compactions in “RocksDB Pending Operations”:

As I mentioned earlier, this almost always means something below RocksDB itself cannot keep up. In the top-right of PMM, we have OS-level metrics in a drop-down, I recommend you look at “Disk Performance” in these scenarios:

On the “Disk Performance” dashboard you can see the “sda” disk has an average write time of 212ms, and a max of 1100ms (1.1 seconds). This is fairly slow.

Further, on the same dashboard I can see the CPU is waiting on disk I/O 98.70% of the time on average. This explains why RocksDB needs to stall to hold back some of the load!

The disks seem too busy to keep up! Looking at the “Mongod – Document Activity” graph, it explains the cause of the high disk usage: 10,000-60,000 inserts per second:

Here we can draw the conclusion that this volume of inserts on this system configuration causes some stalling in RocksDB.

RocksDB Block Cache

The RocksDB Block Cache is the in-heap cache RocksDB uses to cache uncompressed pages. Generally, deployments benefit from dedicating most of their memory to the Linux file system cache vs. the RocksDB Block Cache. We recommend using only 20-30% of the host RAM for block cache.

PMM can take away some of the guesswork with the “RocksDB Block Cache Hit Ratio” graph, showing the efficiency of the block cache:

It is difficult to define a “good” and “bad” number for this metric, as the number varies for every deployment. However, one important thing to look for is significant changes in this graph. In this example, the Block Cache has a page in cache 3000 times for every 1 time it does not.

If you wanted to test increasing your block cache, this graph becomes very useful. If you increase your block cache and do not see an improvement in the hit ratio after a lengthy period of testing, this usually means more block cache memory is not necessary.

RocksDB Read Latency Graphs

PMM graphs Read Latency metrics for RocksDB in several different graphs, one dedicated to Level0:

And three other graphs display Average, 99th Percentile and Maximum latencies for each RocksDB level. Here is an example from the 99th Percentile latency metrics:

Coming Soon

Percona Monitoring and Management needs to add some more metrics that explain the performance of the engine. The rate of deletes/tombstones in the system affects RocksDB’s performance. Currently, this metric is not something our system can easily gather like other engine metrics. Percona Monitoring and Management can’t easily graph the efficiency of the Bloom filter yet, either. These are currently open feature requests to the MongoRocks (and likely RocksDB) team(s) to add in future versions.

Percona’s release of Percona Server for MongoDB 3.4 includes a new, improved version of MongoRocks and RocksDB. More is available in the release notes!

Feb
22
2017
--

Percona XtraBackup 2.4.6 is Now Available

CVE-2016-6225

Percona XtraBackup 2.4.6Percona announces the GA release of Percona XtraBackup 2.4.6 on February 22, 2017. You can download it from our download site and apt and yum repositories.

Percona XtraBackup enables MySQL backups without blocking user queries, making it ideal for companies with large data sets and mission-critical applications that cannot tolerate long periods of downtime. Offered free as an open source solution, Percona XtraBackup drives down backup costs while providing unique features for MySQL backups.

New features:
  • Percona XtraBackup implemented a new --remove-original option that can be used to remove the encrypted and compressed files once they’ve been decrypted/decompressed.
Bugs Fixed:
  • XtraBackup was using username set for the server in a configuration file even if a different user was defined in the user’s configuration file. Bug fixed #1551706.
  • Incremental backups did not include xtrabackup_binlog_info and xtrabackup_galera_info files. Bug fixed #1643803.
  • In case a warning was written to stout instead of stderr during the streaming backup, it could cause assertion in the xbstream. Bug fixed #1647340.
  • xtrabackup --move-back option did not always restore out-of-datadir tablespaces to their original directories. Bug fixed #1648322.
  • innobackupex and xtrabackup scripts were showing the password in the ps output when it was passed as a command line argument. Bug fixed #907280.
  • Incremental backup would fail with a path like ~/backup/inc_1 because xtrabackup didn’t properly expand tilde. Bug fixed #1642826.
  • Fixed missing dependency check for Perl Digest::MD5 in rpm packages. This will now require perl-MD5 package to be installed from EPEL repositories on CentOS 5 and CentOS 6 (along with libev). Bug fixed #1644018.
  • Percona XtraBackup now supports -H, -h, -u and -p shortcuts for --hostname, --datadir, --user and --password respectively. Bugs fixed #1655438 and #1652044.

Release notes with all the bugfixes for Percona XtraBackup 2.4.6 are available in our online documentation. Please report any bugs to the launchpad bug tracker.

Feb
22
2017
--

Percona XtraBackup 2.3.7 is Now Available

Percona XtraBackup 2.3.5

Percona XtraBackup 2.3.7Percona announces the release of Percona XtraBackup 2.3.7 on February 22, 2017. Downloads are available from our download site or Percona Software Repositories.

Percona XtraBackup enables MySQL backups without blocking user queries, making it ideal for companies with large data sets and mission-critical applications that cannot tolerate long periods of downtime. Offered free as an open source solution, Percona XtraBackup drives down backup costs while providing unique features for MySQL backups.

This release is the current GA (Generally Available) stable release in the 2.3 series.

New Features
  • Percona XtraBackup has implemented a new --remove-original option that can be used to remove the encrypted and compressed files once they’ve been decrypted/decompressed.
Bugs Fixed:
  • XtraBackup was using username set for the server in a configuration file even if a different user was defined in the user’s configuration file. Bug fixed #1551706.
  • Incremental backups did not include xtrabackup_binlog_info and xtrabackup_galera_info files. Bug fixed #1643803.
  • Percona XtraBackup would fail to compile with -DWITH_DEBUG and -DWITH_SSL=system options. Bug fixed #1647551.
  • xtrabackup --move-back option did not always restore out-of-datadir tablespaces to their original directories. Bug fixed #1648322.
  • innobackupex and xtrabackup scripts were showing the password in the ps output when it was passed as a command line argument. Bug fixed #907280.
  • Incremental backup would fail with a path like ~/backup/inc_1 because xtrabackup didn’t properly expand tilde. Bug fixed #1642826.
  • Fixed missing dependency check for Perl Digest::MD5 in rpm packages. This will now require perl-MD5 package to be installed from EPEL repositories on CentOS 5 and CentOS 6 (along with libev). Bug fixed #1644018.
  • Percona XtraBackup now supports -H, -h, -u and -p shortcuts for --hostname, --datadir, --user and --password respectively. Bugs fixed #1655438 and #1652044.

Other bugs fixed: #1655278.

Release notes with all the bugfixes for Percona XtraBackup 2.3.7 are available in our online documentation. Bugs can be reported on the launchpad bug tracker.

Feb
22
2017
--

MobileIron adding IoT management to its arsenal

Internet of Things connecting in cloud over city scape. MobileIron, which went public in 2014, has been known mostly for helping large companies manage mobile devices, especially in a time when people tend to bring their own. Today it announced it was expanding that mission to the Internet of Things.
When you think about it, it’s a logical move for a company that is used to overseeing a large number of devices and helping IT keep them secure. Read More

Feb
21
2017
--

Percona Monitoring and Management (PMM) Upgrade Guide

Percona Monitoring and Management

Percona Monitoring and ManagementThis post is part of a series of Percona’s MongoDB 3.4 bundle release blogs. The purpose of this blog post is to demonstrate current best-practices for an in-place Percona Monitoring and Management (PMM) upgrade. Following this method allows you to retain data previously collected by PMM in your MySQL or MongoDB environment, while upgrading to the latest version.

Step 1: Housekeeping

Before beginning this process, I recommend that you use a package manager that installs directly from Percona’s official software repository. The install instructions vary by distro, but for Ubuntu users the commands are:

wget https://repo.percona.com/apt/percona-release_0.1-4.$(lsb_release -sc)_all.deb

sudo dpkg -i percona-release_0.1-4.$(lsb_release -sc)_all.deb

Step 2: PMM Server Upgrade

Now that we have ensured we’re using Percona’s official software repository, we can continue with the upgrade. To check which version of PMM server is running, execute the following command on your PMM server host:

docker ps

This command shows a list of all running Docker containers. The version of PMM server you are running is found in the image description.

docker_ps

Once you’ve verified you are on an older version, it’s time to upgrade!

The first step is to stop and remove your docker pmm-server container with the following command:

docker stop pmm-server && docker rm pmm-server

Please note that this command may take several seconds to complete.
docker_stop

The next step is to create and run the image with the new version tag. In this case, we are installing version 1.1.0. Please make sure to verify the correct image name in the install instructions.

Run the command below to create and run the new image.

docker run -d
  -p 80:80
  --volumes-from pmm-data
  --name pmm-server
  --restart always
  percona/pmm-server:1.1.0

docker_run

We can confirm our new image is running with the following command:

docker ps

docker_ps

As you can see, the latest version of PMM server is installed. The final step in the process is to update the PMM client on each host to be monitored.

Step 3: PMM Client Upgrade

The GA version of Percona Monitoring and Management supports in-place upgrades. Instructions can be found in our documentationOn the client side, update the local apt cache, and upgrade to the new version of pmm-client by running the following commands:

apt-get update

apt-get_update

apt-get install pmm-client

Congrats! We’ve successfully upgraded to the latest PMM version. As you can tell from the graph below, there is a slight gap in our polling data due to the downtime necessary to upgrade the version. However, we have verified that the data that existed prior to the upgrade is still available and new data is being gathered.

grafana_graph

Conclusion

I hope this blog post has given you the confidence to do an in-place Percona Monitoring and Management upgrade. As always, please submit your feedback on our forums with regards to any PMM-related suggestions or questions. Our goal is to make PMM the best-available open-source MySQL and MongoDB monitoring tool.

Feb
21
2017
--

Webinar Wednesday February 22, 2017: Percona Server for MongoDB 3.4 Product Bundle Release

Percona Server for MongoDB

Product Bundle ReleaseJoin Percona’s MongoDB Practice Manager David Murphy on Wednesday, February 22, 2017 at 10:00 am PST / 1:00 pm EST (UTC-8) as he reviews and discusses the Percona Server for MongoDB, Percona Monitoring and Management (PMM) and Percona Toolkit product bundle release.

The webinar covers how this new bundled release ensures a robust, secure database that can be adapted to changing business requirements. It demonstrates how MongoDB, PMM and Percona Toolkit are used together so that organizations benefit from the cost savings and agility provided by free and proven open source software.

Percona Server for MongoDB 3.4 delivers all the latest MongoDB 3.4 Community Edition features, additional Enterprise features and a greater choice of storage engines.

Along with improved insight into the database environment, the solution provides enhanced control options for optimizing a wider range of database workloads with greater reliability and security.

Some of the features that will be discussed are:

  • Percona Server for MongoDB 3.4
    • All the features of MongoDB Community Edition 3.4, which provides an open source, fully compatible, drop-in replacement:
      • Integrated, pluggable authentication with LDAP to provide a centralized enterprise authentication service
      • Open-source auditing for visibility into user and process actions in the database, with the ability to redact sensitive information (such as user names and IP addresses) from log files
      • Hot backups for the WiredTiger engine protect against data loss in the case of a crash or disaster, without impacting performance
      • Two storage engine options not supported by MongoDB Community Edition 3.4:
        • MongoRocks, the RocksDB-powered storage engine, designed for demanding, high-volume data workloads such as in IoT applications, on-premises or in the cloud.
        • Percona Memory Engine is ideal for in-memory computing and other applications demanding very low latency workloads.
  • Percona Monitoring and Management 1.1
    • Support for MongoDB and Percona Server for MongoDB
    • Graphical dashboard information for WiredTiger, MongoRocks and Percona Memory Engine
  • Percona Toolkit 3.0
    • Two new tools for MongoDB:
      • pt-mongodb-summary (the equivalent of pt-mysql-summary) provides a quick, at-a-glance overview of a MongoDB and Percona Server for MongoDB instance.
      • pt-mongodb-query-digest (the equivalent of pt-query-digest for MySQL) offers a query review for troubleshooting.

You can register for the webinar here.

MongoDB BackupsDavid Murphy, MongoDB Practice Manager

David joined Percona in October 2015 as Practice Manager for MongoDB. Prior to that, David joined the ObjectRocket by Rackspace team as the Lead DBA in Sept 2013. With the growth involved with a any recently acquired startup, David’s role covered a wide range from evangelism, research, run book development, knowledge base design, consulting, technical account management, mentoring and much more.

Prior to the world of MongoDB, David was a MySQL and NoSQL architect at Electronic Arts. There, he worked with some of the largest titles in the world like FIFA, SimCity, and Battle Field providing tuning, design, and technology choice responsibilities. David maintains an active interest in database speaking and exploring new technologies.

Feb
21
2017
--

Exyn unveils AI to help drones fly autonomously, even indoors or off the grid

Exyn Technologies AI software allows drones to fly without pilots where GPS and Wifi isn't available. A startup called Exyn Technologies Inc. today revealed AI software that enables drones to fly autonomously, even in dark, obstacle-filled environments or beyond the reaches of GPS. Read More

Feb
21
2017
--

Citrix CEO Kirill Tatarinov talks about punch cards and the 3D future

citrix-ceo-kirill-tatarinov Kirill Tatarinov has seen computing from bottom to top. As a student in the USSR he wrote programs on punch cards to manage the cutting edge hardware clones that Russia was churning out and now, as CEO of Citrix, he’s working on the next generation of managed computing. His vision for the future is simple: he thinks 3D will be the next big UI shift and that we need to be ready. Tatarinov… Read More

Powered by WordPress | Theme: Aeros 2.0 by TheBuckmaker.com