Jun
15
2017
--

Three Methods of Installing Percona Monitoring and Management

Installing Percona Monitoring and Management

Installing Percona Monitoring and ManagementIn this blog post, we’ll look at three different methods for installing Percona Monitoring and Management (PMM).

Percona offers multiple methods of installing Percona Monitoring and Management, depending on your environment and scale. I’ll also share comments on which installation methods we’ve decided to forego for now. Let’s begin by reviewing the three supported methods:

  1. Virtual Appliance
  2. Amazon Machine Image
  3. Docker

Virtual Appliance

We ship an OVF/OVA method to make installation as simple as possible, with the least amount of effort required and at the lowest cost to you. You can leverage the investment in your virtualization deployment platform. OVF is an open standard for packaging and distributing virtual appliances, designed to be run in virtual machines.

Using OVA with VirtualBox as a first step is common in order to quickly play with a working PMM system, and get right to adding clients and observing activity within your own environment against your MySQL and MongoDB instances. But you can also use the OVA file for enterprise deployments. It is a flexible file format that can be imported into other popular hypervisor systems such as VMware, Red Hat Virtualization, XenServer, Microsoft System Centre Virtual Machine Manager and others.

We’d love to hear your feedback on this installation method!

AWS AMI

We also have an AWS AMI in order to provide easy scaling of PMM Server in AWS, so that you can deploy onto any instance size required for your monitoring instance. Depending on the AWS region you’re in, you’ll need to choose from the appropriate AMI Instance ID. Soon we’ll be moving to the AWS Marketplace for even easier deployment. When this is implemented, you will no longer need to clone an existing AMI ID.

Docker

Docker is our most common production deployment method. It is easy (three commands) and scalable (tuning passed on the command line to Docker run). While we recognize that Docker is still a relatively new deployment system for many users, it is dramatically gaining adoption. It is also where Percona is investing the bulk of our development efforts. We deploy PMM Server as two Docker containers: one for storing the data that persists across restarts/upgrades, and the other for running the actual PMM Server binaries (Grafana, Prometheus, consul, Orchestrator, QAN, etc.).

Where are the RPM/DEB/tar.gz packages?!

A common question I hear is why doesn’t Percona support binary-based installation?

We hear you: RPM/DEB/tar.gz methods are commonly used today for many of your own applications. Percona is striving for simplicity in our deployment of PMM Server, and we spend considerable development and QA effort validating the specific versions of Grafana/Prometheus/QAN/consul/Orchestrator all work seamlessly together.

Percona wants to ensure OS compatibility and long-term support of PMM, and to do binary distribution “right” means it can quickly get expensive to build and QA across all the popular Linux distributions available today. We’re in no way against binary distributions. For example, see our list of the nine supported platforms for which we provide bug fix support.

Percona decided to focus our development efforts on stability and features, and less on the number of supported platforms. Hence the hyper-focus on Docker. We don’t have any current plans to move to a binary deployment method for PMM, but we are always open to hearing your feedback. If there is considerable interest, then please let me know via the comments below. We’ll take these thoughts into consideration for PMM planning in the second half of 2017.

Which other methods of installing Percona Monitoring and Management would you like to see?

Feb
24
2017
--

Installing Percona Monitoring and Management (PMM) for the First Time

Percona Monitoring and Management 2

Percona Monitoring and ManagementThis post is another in the series on Percona’s MongoDB 3.4 bundle release. This post is meant to walk a prospective user through the benefits of Percona Monitoring and Management (PMM), how it’s architected and the simple install process. By the end of this post, you should have a good idea of what PMM is, where it can add value in your environment and how you can get PMM going quickly.

Percona Monitoring and Management (PMM) is Percona’s open-source tool for monitoring and alerting on database performance and the components that contribute to it. PMM monitors MySQL (Percona Server and MySQL CE), Amazon RDS/Aurora, MongoDB (Percona Server and MongoDB CE), Percona XtraDB/Galera Cluster, ProxySQL, and Linux.

What is it?

Percona Monitoring and Management is an amalgamation of exciting, best in class, open-source tools and Percona “engineering wizardry,” designed to make it easier to monitor and manage your environment. The real value to our users is the amount of time we’ve spent integrating the tools, plus the pre-built dashboards we’ve constructed that leverage the ten years of performance optimization experience. What you get is a tool that is ready to go out of the box, and installs in minutes. If you’re still not convinced, like ALL Percona software it’s completely FREE!

Sound good? I can hear you nodding your head. Let’s take a quick look at the architecture.

What’s it made of?

PMM, at a high-level, is made up of two basic components: the client and the server. The PMM Client is installed on the database servers themselves and is used to collect metrics. The client contains technology specific exporters (which collect and export data), and an “admin interface” (which makes the management of the PMM platform very simple). The PMM server is a “pre-integrated unit” (Docker, VM or AWS AMI) that contains four components that gather the metrics from the exporters on the PMM client(s). The PMM server contains Consul, Grafana, Prometheus and a Query Analytics Engine that Percona has developed. Here is a graphic from the architecture section of our documentation. In order to keep this post to a manageable length, please refer to that page if you’d like a more “in-depth” explanation.

How do I use it?

PMM is very easy to access once it has been installed (more on the install process below). You will simply open up the web browser of your choice and connect to the PMM Landing Page by typing

http://<ip_address_of _PMM_server>

. That takes you to the PMM landing page, where you can access all of PMM’s tools. If you’d like to get a look into the user experience, we’ve set up a great demo site so you can easily test it out.

Where should I use it?

There’s a good chance that you already have a monitoring/alerting platform for your production workloads. If not, you should set one up immediately and start analyzing trends in your environment. If you’re confident in your production monitoring solution, there is still a use for PMM in an often overlooked area: development and testing.

When speaking with users, we often hear that their development and test environments run their most demanding workloads. This is often due to stress testing and benchmarking. The goal of these workloads is usually to break something. This allows you to set expectations for normal, and thus abnormal, behavior in your production environment. Once you have a good idea of what’s “normal” and the critical factors involved, you can alert around those parameters to identify “abnormal” patterns before they cause user issues in production. The reason that monitoring is critical in your dev/test environment(s) is that you want to easily spot inflection points in your workload, which signal impending disaster. Dashboards are the easiest way for humans to consume and analyze this data.

Are you sold? Let’s get to the easiest part: installation.

How do you install it?

PMM is very easy to install and configure for two main reasons. The first is that the components (mentioned above) take some time to install, so we spent the time to integrate everything and ship it as a unit: one server install and a client install per host. The second is that we’re targeting customers looking to monitor MySQL and MongoDB installations for high-availability and performance. The fact that it’s a targeted solution makes pre-configuring it to monitor for best practices much easier. I believe we’ve all seen a particular solution that tries to do a little of everything, and thus actually does no particular thing well. This is the type of tool that we DO NOT want PMM to be. Now, onto the installation procedure.

There are four basic steps to get PMM monitoring your infrastructure. I do not want to recreate the Deployment Guide in order to maintain the future relevancy of this post. However, I’ll link to the relevant sections of the documentation so you can cut to the chase. Also, underneath each step, I’ll list some key takeaways that will save you time now and in the future.

  1. Install the integrated PMM server in the flavor of your choice (Docker, VM or AWS AMI)
    1. Percona recommends Docker to deploy PMM server as of v1.1
      1. As of right now, using Docker will make the PMM server upgrade experience seamless.
      2. Using the default version of Docker from your package manager may cause unexpected behavior. We recommend using the latest stable version from Docker’s repositories (instructions from Docker).
    2. PMM server AMI and VM are “experimental” in PMM v1.1
    3. When you open the “Metrics Monitor” for the first time, it will ask for credentials (user: admin pwd: admin).
  2. Install the PMM client on every database instance that you want to monitor.
    1. Install with your package manager for easier upgrades when a new version of PMM is released.
  3. Connect the PMM client to the PMM Server.
    1. Think of this step as sending configuration information from the client to the server. This means you are telling the client the address of the PMM server, not the other way around.
  4. Start data collection services on the PMM client.
    1. Collection services are enabled per database technology (MySQL, MongoDB, ProxySQL, etc.) on each database host.
    2. Make sure to set permissions for PMM client to monitor the database: Cannot connect to MySQL: Error 1045: Access denied for user ‘jon’@’localhost’ (using password: NO)
      1. Setting proper credentials uses this syntax sudo pmm-admin add <service_type> –user xxxx –password xxxx
    3. There’s good information about PMM client options in the “Managing PMM Client” section of the documentation for advanced configurations/troubleshooting.

What’s next?

That’s really up to you, and what makes sense for your needs. However, here are a few suggestions to get the most out of PMM.

  1. Set up alerting in Grafana on the PMM server. This is still an experimental function in Grafana, but it works. I’d start with Barrett Chambers’ post on setting up email alerting, and refine it with  Peter Zaitsev’s post.
  2. Set up more hosts to test the full functionality of PMM. We have completely free, high-performance versions of MySQL, MongoDB, Percona XtraDB Cluster (PXC) and ProxySQL (for MySQL proxy/load balancing).
  3. Start load testing the database with benchmarking tools to build your troubleshooting skills. Try to break something to learn what troubling trends look like. When you find them, set up alerts to give you enough time to fix them.

Powered by WordPress | Theme: Aeros 2.0 by TheBuckmaker.com