Oct
31
2017
--

MySQL Dashboard Improvements in Percona Monitoring and Management 1.4.0

In this blog post, I’ll walk through some of the improvements to the Percona Monitoring and Management (PMM) MySQL dashboard in release 1.4.0.

As the part of Percona Monitoring and Management development, we’re constantly looking for better ways to visualize information and help you to spot and resolve problems faster. We’ve made some updates to the MySQL dashboard in the 1.4.0 release. You can see those improvements in action in our Percona Monitoring and Management Demo Site: check out the MySQL Overview and MySQL InnoDB Metrics dashboards.

MySQL Client Thread Activity

Percona Monitoring and Management 1

One of the best ways to characterize a MySQL workload is to look at the number of MySQL server-client connections (Threads Connected). You should compare this number to how many of those threads are actually doing something on the server side (Threads Running), rather than just sitting idle waiting for a client to send the next request.

MySQL can handle thousands of connected threads quite well. However, many threads (hundred) running concurrently often increases query latency. Increased internal contention can make the situation much worse.

The problem with those metrics is that they are extremely volatile – one second you might have a lot of threads connected and running, and then none. This is especially true when some stalls on the MySQL level (or higher) causes pile-ups.

To provide better insight, we now show Peak Threads Connected and Peak Threads Running to help easily spot such potential pile-ups, as well as Avg Threads Running. These stats allow you look at a high number of threads connected and running to see if it there are just minor spikes (which tend to happen in many systems on a regular basis), or something more prolonged that warrants deeper investigation.

To simplify it even further: Threads Running spiking for a few seconds is OK, but spikes persisting for 5-10 seconds or more are often signs of problems that are impacting users (or problems about to happen).

InnoDB Logging Performance

Percona Monitoring and Management 2

Since I wrote a blog post about Choosing MySQL InnoDB Log File Size, I thought it would be great to check out how long the log file space would last (instead of just looking at how much log space is written per hour). Knowing how long the innodb_log_buffer_size lasts is also helpful for tuning this variable, in general.

This graph shows you how much data is written to the InnoDB Log Files, which helps to understand your disk bandwidth consumption. It also tells you how long it will take to go through your combined Redo Log Space and InnoDB Log Buffer Size (at this rate).

As I wrote in the blog post, there are a lot of considerations for choosing the InnoDB log file size, but having enough log space to accommodate all the changes for an hour is a good rule of thumb. As we can see, this system is close to full at around 50 minutes.

When it comes to innodb_log_buffer_sizeeven if InnoDB is not configured to flush the log at every transaction commit, it is going to be flushed every second by default. This means 10-15 seconds is usually good enough to accommodate the spikes. This system has it set at about 40 seconds (which is more than enough).

InnoDB Read-Ahead

Percona Monitoring and Management 3

This graph helps you understand how InnoDB Read-Ahead is working out, and is a pretty advanced graph.

In general, Innodb Read-Ahead is not very well understood. I think in most cases it is hard to tell if it is helping or hurting the current workload in its current configuration.

The for Read-Ahead in any system (not just InnoDB) is to pre-fetch data before it is really needed (in order to reduce latency and improve performance). The risk, however, is pre-fetching data that isn’t needed. This is wasteful.

InnoDB has two Read-Ahead options: Linear Read-Ahead (designed to speed up workloads that have physically sequential data access) and Random Read-Ahead (designed to help workloads that tend to access the data in the same vicinity but not in a linear order).

Due to potential overhead, only Linear Read-Ahead is enabled by default. You need to enable Random Read-Ahead separately if you want to determine its impact on your workload

Back to the graph in question: we show a number of pages pre-fetched by Linear and Random Read-Aheads to confirm if these are even in use with your workload. We show Number of Pages Fetched but Never Accessed (evicted without access) – shown as both the number of pages and as a percent of pages. If Fetched but Never Accessed is more than 30% or so, Read-Ahead might be producing more waste instead of helping your workload. It might need tuning.

We also show the portion of IO requests that InnoDB Read-Ahead served, which can help you understand the portion of resources spent on InnoDB Read-Ahead

Due to the timing of how InnoDB increments counters, the percentages of IO used for Read-Ahead and pages evicted without access shows up better on larger scale graphs.

Conclusion

I hope you find these graphs helpful. We’ll continue making Percona Monitoring and Management more helpful for troubleshooting database systems and getting better performance!

Oct
20
2017
--

Percona Monitoring and Management 1.4.0 Is Now Available

Percona Monitoring and ManagementPercona announces the release of Percona Monitoring and Management 1.4.0.

This release introduces the support of external Prometheus exporters so that you can create dashboards in the Metrics monitor even for the monitoring services other than those provided with PMM client packages. To attach an existing external Prometheus exporter, run pmm-admin add external:metrics NAME_OF_EXPORTER URL:PORT.

The list of attached monitoring services is now available not only in the tabular format but also as a JSON file to enable automatic verification of your configuration. To view the list of monitoring services in the JSON format run pmm-admin list --json.

In this release, Prometheus and Grafana have been upgraded. Prometheus version 1.7.2, shipped with this release, offers a number of bug fixes that will contribute to its smooth operation inside PMM. For more information, see the Prometheus change log.

Version 4.5.2 of Grafana, included in this release of PMM, offers a number of new tools that will facilitate data analysis in PMM:

  • New query editor for Prometheus expressions features syntax highlighting and autocompletion for metrics, functions and range vectors.
    Percona Monitoring and Management
  • Query inspector provides detailed information about the query. The primary goal of graph inspector is to enable analyzing a graph which does not display data as expected.
    Percona Monitoring and Management

The complete list of new features in Graphana 4.5.0 is available from What’s New in Grafana v4.5.

For install and upgrade instructions, see Deploying Percona Monitoring and Management.

New features

  • PMM-1520: Prometheus upgraded to version 1.7.2.
  • PMM-1521: Grafana upgraded to version 4.5.2.
  • PMM-1091: The pmm-admin list produces a JSON document as output if the --json option is supplied.
  • PMM-507: External exporters are supported with pmm-admin.
  • PMM-1622: docker images of PMM Server are available for downloading as tar packages.

Improvements

  • PMM-1553: Consul upgraded to the 0.8 release.

Bug fixes

  • PMM-1172: In some cases, the TABLES section of a query in QAN could contain no data and display the List of tables is empty error. The Query and Explain sections had the relevant values.
  • PMM-1519: A Prometheus instance could be forced to shut down if it contained too many targets (more than 50). When started the next time, Prometheus initiated a time-consuming crash recovery routine which took long on large installations.
Oct
18
2017
--

How to Choose the MySQL innodb_log_file_size

innodb_log_file_size

In this blog post, I’ll provide some guidance on how to choose the MySQL innodb_log_file_size.

Like many database management systems, MySQL uses logs to achieve data durability (when using the default InnoDB storage engine). This ensures that when a transaction is committed, data is not lost in the event of crash or power loss.

MySQL’s InnoDB storage engine uses a fixed size (circular) Redo log space. The size is controlled by innodb_log_file_size and innodb_log_files_in_group (default 2). You multiply those values and get the Redo log space that available to use. While technically it shouldn’t matter whether you change either the innodb_log_file_size or innodb_log_files_in_group variable to control the Redo space size, most people just work with the innodb_log_file_size and leave innodb_log_files_in_group alone.

Configuring InnoDB’s Redo space size is one of the most important configuration options for write-intensive workloads. However, it comes with trade-offs. The more Redo space you have configured, the better InnoDB can optimize write IO. However, increasing the Redo space also means longer recovery times when the system loses power or crashes for other reasons.  

It is not easy or straightforward to predict how much time a system crash recovery takes for a specific innodb_log_file_size value – it depends on the hardware, MySQL version and workload. It can vary widely (10 times difference or more, depending on the circumstances). However, around five minutes per 1GB of innodb_log_file_size is a decent ballpark number. If this is really important for your environment, I would recommend testing it by a simulating system crash under full load (after the database has completely warmed up).   

While recovery time can be a guideline for the limit of the InnoDB Log File size, there are a couple of other ways you can look at this number – especially if you have Percona Monitoring and Management installed.

Check Percona Monitoring and Management’s “MySQL InnoDB Metrics” Dashboard. If you see a graph like this:

innodb_log_file_size

where Uncheckpointed Bytes is pushing very close to the Max Checkpoint Age, you can almost be sure your current innodb_log_file_size is limiting your system’s performance. Increasing it can provide substantial performance improvements.

If you see something like this instead:

innodb_log_file_size 2

where the number of Uncheckpointed Bytes is well below the Max Checkpoint Age, then increasing the log file size won’t give you a significant improvement.

Note: many MySQL settings are interconnected. While a specific log file size might be good enough for smaller innodb_buffer_pool_size, larger InnoDB Buffer Pool values might warrant larger log files for optimal performance.

Another thing to keep in mind: the recovery time we spoke about early really depends on the Uncheckpointed Bytes rather than total log file size. If you do not see recovery time increasing with a larger innodb_log_file_size, check out InnoDB Checkpoint Age graph – it might be you just can’t fully utilize large log files with your workload and configuration.

Another way to look at the log file size is in context of log space usage:

innodb_log_file_size 3

This graph shows the amount of Data Written to the InnoDB log files per hour, as well as the total size of the InnoDB log files. In the graph above, we have 2GB of log space and some 12GB written to the Log files per hour. This means we cycle through logs every ten minutes.

InnoDB has to flush every dirty page in the buffer pool at least once per log file cycle time.

InnoDB gets better performance when it does that less frequently, and there is less wear and tear on SSD devices. I like to see this number at no less than 15 minutes. One hour is even better.  

Summary

Getting the innodb_log_file_file size is important to achieve the balance between reasonably fast crash recovery time and good system performance. Remember, your recovery time objective it is not as trivial as you might imagine. I hope the techniques described in this post help you to find the optimal value for your situation!

Oct
11
2017
--

Percona Monitoring and Management 1.3.2 Is Now Available

Percona Monitoring Management

Percona Monitoring ManagementPercona announces the release of Percona Monitoring and Management 1.3.2. This release only contains bug fixes related to usability.

For install and upgrade instructions, see Deploying Percona Monitoring and Management.

Bug fixes

  • PMM-1529: When the user selected “Today”, “This week”, “This month” or “This year” range in Metrics Monitor and clicked the Query Analytics button, the QAN page opened reporting no data for the selected range even if the data were available.
    Percona Monitoring and Management
  • PMM-1528: In some cases, the page not found error could appear instead of the QAN page after upgrading by using the Upgrade button.
  • PMM-1498 : In some cases, it was not possible to shut down the virtual machine containing the PMM Server imported as an OVA image.

Other bug fixes in this release: PMM-913, PMM-1215, PMM-1481PMM-1483, PMM-1507

 

Oct
10
2017
--

Webinar Wednesday, October 11, 2017: Percona Monitoring and Management (PMM) Demonstration

Percona Monitoring and Management

Percona Monitoring and Management (PMM)Join Percona’s Product Manager Michael Coburn as he presents a Percona Monitoring and Management (PMM) Demonstration on Wednesday, October 11, 2017, at 10:00 am PDT / 1:00 pm EDT (UTC-7).

How can you optimize database performance if you can’t see what’s happening? Percona Monitoring and Management (PMM) is a free, open source database troubleshooting and performance optimization platform for MySQL and MongoDB. PMM uses Metrics Monitor (Grafana + Prometheus) for visualization of data points. It also has Query Analytics (QAN), to help identify and quantify non-performant queries and provide thorough time-based analysis to ensure that your data works as efficiently as possible.

Michael Coburn will provide a brief demo of PMM. He will also cover newly released features in PMM such as QAN for MongoDB, new MyRocks dashboards and tooltips for metrics monitoring.

By the end of the webinar you will have a better understanding of how to:

  • Observe database performance from a system and service metrics perspective
  • See database performance from the queries executing in MySQL and MongoDB
  • Leverage the metrics and queries from PMM to make informed decisions about crucial database resources: scaling your database tier, database resource utilization and management, and having your team focus on the most critical database events

Register for the webinar here.

Michael CoburnMichael Coburn, Principal Technical Account Manager

Michael joined Percona as a Consultant in 2012. He progressed through various roles including Managing Consultant, Principal Architect, Technical Account Manager, and Technical Support Engineer. He is now leading Product Management for Percona Monitoring and Management.

 

Oct
05
2017
--

Graph Descriptions for Metrics Monitor in Percona Monitoring and Management 1.3.0

PMM 1.3.0

The Metrics Monitor of Percona Monitoring and Management 1.3.0 (PMM) provides graph descriptions to display more information about the monitored data without cluttering the interface.

Percona Monitoring and Management 1.3.0 is a free and open-source platform for managing and monitoring MySQL®, MariaDB® and MongoDB® performance. You can run PMM in your own environment for maximum security and reliability. It provides thorough time-based analysis for MySQL, MariaDB® and MongoDB servers to ensure that your data works as efficiently as possible.

Each dashboard graph in PMM contains a lot of information. Sometimes, it is not easy to understand what the plotted line represents. The metric labels and the plotted data are limited and have to account for the space they can use in dashboards. It is simply not possible to provide additional information which might be helpful when interpreting the monitored metrics.

The new version of the PMM dashboards introduces on-demand descriptions with more details about the metrics in the given graph and about the data.

Percona Monitoring and Management 1.3.0

These on-demand descriptions are available when you hover the mouse pointer over the icon at the top left corner of each graph. The descriptions do not use the valuable space of your dashboard. The graph descriptions appear in small boxes. If more information exists about the monitored metrics, the description contains a link to the associated documentation.

Percona Monitoring and Management 1.3.0

In release 1.3.0 of PMM, Metrics Monitor only starts to use this convenient tool. In subsequent releases, graph descriptions are going to become a standard attribute of each Metrics Monitor dashboard.

Sep
25
2017
--

Percona Monitoring and Management 1.3.0 Is Now Available

Percona Monitoring and Management 1.3.0

Percona Monitoring and Management 1.3.0Percona announces the release of Percona Monitoring and Management 1.3.0 on September 26, 2017.

Percona Monitoring and Management 1.3.0 introduces basic support for the MyRocks storage engine. There is a special dashboard in Metrics Monitor that presents the essential metrics of MyRocks as separate graphs. Also, Metrics Monitor graphs now feature on-demand descriptions that remain visible as long as hover over them.

For example, this graph helps you visualize MyRocks database operations of Next and Seek attributes:

There are many improvements to QAN (Query Analytics) both in the user interface design and in its capabilities. In this release, QAN starts supporting all types of MongoDB queries. For example, if you need to limit the list of available queries to only those that you are interested in, use the Query Filter field next to the database selection button:

Orchestrator is not enabled by default because leaving it in a non-configured state was confusing to users. It is still possible to enable it along with the docker run command.

For install and upgrade instructions, see Deploying Percona Monitoring and Management.

New Features

  • PMM-1290: Basic support for the metrics of the MyRocks storage engine in MySQL via the mysqld-exporter.
  • PMM-1312: Metrics Monitor now features a MyRocks dashboard.
  • PMM-1330: Basic telemetry data are collected from PMM Servers.
  • PMM-1417: A new dashboard in Metrics Monitor designed to enable exploring any data in Prometheus
  • PMM-1437pmm-admin allows passing parameters to exporters
  • PMM-685: The EXPLAIN command is now supported in QAN.

Improvements

  • PMM-1262: The system checks for updates much faster
  • PMM-1015QAN should shows all collections from a mongod instance. Make sure that profiling is enabled in MongoDB.
  • PMM-1057QAN supports all MongoDB query types.
  • PMM-1270: In Metrics Monitor, the dashboard filter displays only MariaDB hosts.
  • PMM-1287: In pmm-admin mongodb:queries is not experimental anymore and the dev-enable option is no longer needed.
  • PMM-1446: In Metrics Monitor, the MySQL Active Threads graph displays data more accurately.
  • PMM-1455: In Metrics Monitor, features descriptions of graphs
  • PMM-1476: QAN2 is used by default in pmmdemo.percona.com
  • PMM-1479: It is now possible to go to QAN directly from Metrics Monitor.
  • PMM-515Orchestrator is disabled by default. It is possible to enable it when running your docker container.

Bug fixes

  • PMM-1298: In QAN, the query abstract could be empty for MySQL hosts for low-ranking queries. This bug is fixed to contain Low Ranking Queries as the value of the query abstract.
  • PMM-1314: The selected time range in QAN could be applied incorrectly. This bug is now fixed.
  • PMM-1398: Prometheus memory was not updated after PMM upgrade. This bug is now fixed.
  • PMM-1427: The CPU Usage/Load graph in the MySQL Overview dashboard was displayed with slightly incorrect dimensions. This bug is now solved.
  • PMM-1439: If the EXPLAIN command was not supported for the selected query, there could appear a JavaScript error.
  • PMM-1472: It could happen that monitoring of queries for MongoDB with replication could not be enabled.
  • PMM-943: InnoDB AHI Usage Graph had incorrect naming and hit ratio computation.
Sep
06
2017
--

Upcoming Webinar Thursday, September 7: Using PMM to Troubleshoot MySQL Performance Issues

Troubleshooting MySQL Performance

Troubleshooting MySQL PerformanceJoin Percona’s Product Manager, Michael Coburn as he presents Using Percona Monitoring and Management to Troubleshoot MySQL Performance Issues on Thursday, September 7, 2017, at 10:00 am PDT / 1:00 pm EDT (UTC-7).

 

Successful applications often become limited by MySQL performance. Michael will show you how to get great MySQL performance using Percona Monitoring and Management (PMM). There will be a demonstration of how to leverage the combination of the query analytics and metrics monitor when troubleshooting MySQL performance issues. We’ll review the essential components of PMM, and use some of the most common database slowness cases as examples of where to look and what to do.

By the end of the webinar you will have a better understanding of:

  • Query metrics, including bytes sent, lock time, rows sent, and more
  • Metrics monitoring
  • How to identify MySQL performance issues
  • Point-in-time visibility and historical trending of database performance

Register for the webinar here.

Troubleshoot MySQL PerformanceMichael Coburn, Product Manager

Michael joined Percona as a Consultant in 2012 after having worked with high volume stock photography websites and email service provider platforms. WIth a foundation in systems administration, Michael enjoys working with SAN technologies and high availability solutions. A Canadian, Michael currently lives in the Nicoya, Costa Rica area with his wife, two children, and two dogs.
Aug
30
2017
--

Nested Data Structures in ClickHouse

Nested Data Structures

Nested Data StructuresIn this blog post, we’ll look at nested data structures in ClickHouse and how this can be used with PMM to look at queries.

Nested structures are not common in Relational Database Management Systems. Usually, it’s just flat tables. Sometimes it would be convenient to store unstructured information in structured databases.

We are working to adapt ClickHouse as a long term storage for Percona Monitoring and Management (PMM), and particularly to store detailed information about queries. One of the problems we are trying to solve is to count the different errors that cause a particular query to fail.

For example, for date 2017-08-17 the query:

"SELECT foo FROM bar WHERE id=?"

was executed 1000 times. 25 times it failed with error code “1212”, and eight times it failed with error code “1250”. Of course, the traditional way to store this in relational data would be to have a table "Date, QueryID, ErrorCode, ErrorCnt" and then perform a JOIN to this table. Unfortunately, columnar databases don’t perform well with multiple joins, and often the recommendation is to have de-normalized tables.

We can create a column for each possible ErrorCode, but this is not an optimal solution. There could be thousands of them, and most of the time they would be empty.

In this case, ClickHouse proposes Nested data structures. For our case, these can be defined as:

CREATE TABLE queries
(
    Period Date,
    QueryID UInt32,
    Fingerprint String,
    Errors Nested
    (
        ErrorCode String,
        ErrorCnt UInt32
    )
)Engine=MergeTree(Period,QueryID,8192);

This solution has obvious questions: How do we insert data into this table? How do we extract it?

Let’s start with INSERT. Insert can look like:

INSERT INTO queries VALUES ('2017-08-17',5,'SELECT foo FROM bar WHERE id=?',['1220','1230','1212'],[5,6,2])

which means that the inserted query during 2017-08-17 gave error 1220 five times, error 1230 six times and error 1212 two times.

Now, during a different date, it might produce different errors:

INSERT INTO queries VALUES ('2017-08-18',5,'SELECT foo FROM bar WHERE id=?',['1220','1240','1258'],[3,2,1])

Let’s take a look at ways to SELECT data. A very basic SELECT:

SELECT *
FROM queries
??????Period???QueryID???Fingerprint???Errors.ErrorCode?????????Errors.ErrorCnt??
? 2017-08-17 ?       5 ? SELECT foo  ? ['1220','1230','1212'] ? [5,6,2]         ?
? 2017-08-18 ?       5 ? SELECT foo  ? ['1220','1240','1260'] ? [3,16,12]       ?
?????????????????????????????????????????????????????????????????????????????????

If we want to use a more familiar tabular output, we can use the ARRAY JOIN extension:

SELECT *
FROM queries
ARRAY JOIN Errors
??????Period???QueryID???Fingerprint???Errors.ErrorCode???Errors.ErrorCnt??
? 2017-08-17 ?       5 ? SELECT foo  ? 1220             ?            5    ?
? 2017-08-17 ?       5 ? SELECT foo  ? 1230             ?            6    ?
? 2017-08-17 ?       5 ? SELECT foo  ? 1212             ?            2    ?
? 2017-08-18 ?       5 ? SELECT foo  ? 1220             ?            3    ?
? 2017-08-18 ?       5 ? SELECT foo  ? 1240             ?           16    ?
? 2017-08-18 ?       5 ? SELECT foo  ? 1260             ?           12    ?
???????????????????????????????????????????????????????????????????????????

However, usually we want to see the aggregation over multiple periods, which can be done with traditional aggregation functions:

SELECT
    QueryID,
    Errors.ErrorCode,
    SUM(Errors.ErrorCnt)
FROM queries
ARRAY JOIN Errors
GROUP BY
    QueryID,
    Errors.ErrorCode
??QueryID???Errors.ErrorCode???SUM(Errors.ErrorCnt)??
?       5 ? 1212             ?                 2    ?
?       5 ? 1230             ?                 6    ?
?       5 ? 1260             ?                12    ?
?       5 ? 1240             ?                16    ?
?       5 ? 1220             ?                 8    ?
?????????????????????????????????????????????????????

If we want to get really creative and return only one row per QueryID, we can do that as well:

SELECT
    QueryID,
    groupArray((ecode, cnt))
FROM
(
    SELECT
        QueryID,
        ecode,
        sum(ecnt) AS cnt
    FROM queries
    ARRAY JOIN
        Errors.ErrorCode AS ecode,
        Errors.ErrorCnt AS ecnt
    GROUP BY
        QueryID,
        ecode
)
GROUP BY QueryID
??QueryID???groupArray(tuple(ecode, cnt))???????????????????????????????
?       5 ? [('1230',6),('1212',2),('1260',12),('1220',8),('1240',16)] ?
????????????????????????????????????????????????????????????????????????

Conclusion

ClickHouse provides flexible ways to store data in a less structured manner and variety of functions to extract and aggregate it – despite being a columnar database.

Happy data warehousing!

Aug
23
2017
--

Percona Monitoring and Management 1.2.2 is Now Available

Percona Monitoring and Management (PMM)

Percona Monitoring and Management (PMM)Percona announces the release of Percona Monitoring and Management 1.2.2 on August 23, 2017.

For install and upgrade instructions, see Deploying Percona Monitoring and Management.

This release contains bug fixes related to performance and introduces various improvements. It also contains an updated version of Grafana.

Changes in PMM Server

We introduced the following changes in PMM Server 1.2.2:

Bug fixes

  • PMM-927: The error “Cannot read property ‘hasOwnProperty’ of undefined” was displayed on the QAN page for MongoDB.

    After enabling monitoring and generating data for MongoDB, the PMM client showed the following error message on the QAN page: “Cannot read property ‘hasOwnProperty’ of undefined”. This bug is now fixed.

  • PMM-949: Percona Server was not detected properly, the log_slow_* variables were not properly detected.

  • PMM-1081: Performance Schema Monitor treated queries that didn’t show up in every snapshot as new queries reporting a wrong number of counts between snapshots.

  • PMM-1272: MongoDB: the query empty abstract. This bug is now fixed.

  • PMM-1277: The QPS Graph had inappropriate Prometheus query. This bug is now fixed.

  • PMM-1279: The MongoDB summary did not work in QAN2 if mongodb authentication was activated. This bug is now fixed.

  • PMM-1284: Dashboards pointed to QAN2 instead of QAN. This bug is now fixed.

Improvements

  • PMM-586: The wsrep_evs_repl_latency parameter is now monitored in Grafana dashboards

  • PMM-624: The Grafana User ID remains the same in the pmm-server docker image

  • PMM-1209: OpenStack support is now enabled during the OVA image creation

  • PMM-1211: It is now possible to configure a static IP for an OVA image

    The root password can only be set from the console. If the root password is not changed from the default, a warning message appears on the console requesting the user to change the root password on the root first login from the console. Web/SSH users can neither use the root account password nor detect if the root password is set to the default value.

  • PMM-1221: Grafana updated to version 4.4.3

About Percona Monitoring and Management

Percona Monitoring and Management (PMM) is an open-source platform for managing and monitoring MySQL and MongoDB performance. Percona developed it in collaboration with experts in the field of managed database services, support and consulting.

PMM is a free and open-source solution that you can run in your own environment for maximum security and reliability. It provides thorough time-based analysis for MySQL and MongoDB servers to ensure that your data works as efficiently as possible.

A live demo of PMM is available at pmmdemo.percona.com.

We’re always happy to help! Please provide your feedback and questions on the PMM forum.

If you would like to report a bug or submit a feature request, please use the PMM project in JIRA.

Powered by WordPress | Theme: Aeros 2.0 by TheBuckmaker.com