Aug
29
2018
--

Tune Linux Kernel Parameters For PostgreSQL Optimization

Linux parameters for PostgreSQL performance tuning

For optimum performance, a PostgreSQL database depends on the operating system parameters being defined correctly. Poorly configured OS kernel parameters can cause degradation in database server performance. Therefore, it is imperative that these parameters are configured according to the database server and its workload. In this post, we will discuss some important kernel parameters that can affect database server performance and how these should be tuned.

SHMMAX / SHMALL

SHMMAX is a kernel parameter used to define the maximum size of a single shared memory segment a Linux process can allocate. Until version 9.2, PostgreSQL uses System V (SysV) that requires SHMMAX setting. After 9.2, PostgreSQL switched to POSIX shared memory. So now it requires fewer bytes of System V shared memory.

Prior to version 9.3 SHMMAX was the most important kernel parameter. The value of SHMMAX is in bytes.

Similarly SHMALL is another kernel parameter used to define system wide total amount of shared memory pages. To view the current values for SHMMAX, SHMALL or SHMMIN, use the ipcs command.

$ ipcs -lm
------ Shared Memory Limits --------
max number of segments = 4096
max seg size (kbytes) = 1073741824
max total shared memory (kbytes) = 17179869184
min seg size (bytes) = 1

$ ipcs -M
IPC status from  as of Thu Aug 16 22:20:35 PKT 2018
shminfo:
	shmmax: 16777216	(max shared memory segment size)
	shmmin:       1	(min shared memory segment size)
	shmmni:      32	(max number of shared memory identifiers)
	shmseg:       8	(max shared memory segments per process)
	shmall:    1024	(max amount of shared memory in pages)

PostgreSQL uses System V IPC to allocate the shared memory. This parameter is one of the most important kernel parameters. Whenever you get following error messages, it means that you have an older version PostgreSQL and you have a very low SHMMAX value. Users are expected to adjust and increase the value according to the shared memory they are going to use.

Possible misconfiguration errors

If SHMMAX is misconfigured, you can get an error when trying to initialize a PostgreSQL cluster using the initdb command.

DETAIL: Failed system call was shmget(key=1, size=2072576, 03600).
HINT: This error usually means that PostgreSQL's request for a shared memory segment exceeded your kernel's SHMMAX parameter. 
You can either reduce the request size or reconfigure the kernel with larger SHMMAX. To reduce the request size (currently 2072576 bytes),
reduce PostgreSQL's shared memory usage, perhaps by reducing shared_buffers or max_connections.
If the request size is already small, it's possible that it is less than your kernel's SHMMIN parameter,
in which case raising the request size or reconfiguring SHMMIN is called for.
The PostgreSQL documentation contains more information about shared memory configuration. child process exited with exit code 1

Similarly, you can get an error when starting the PostgreSQL server using the pg_ctl command.

DETAIL: Failed system call was shmget(key=5432001, size=14385152, 03600).
HINT: This error usually means that PostgreSQL's request for a shared memory segment exceeded your kernel's SHMMAX parameter.
You can either reduce the request size or reconfigure the kernel with larger SHMMAX.; To reduce the request size (currently 14385152 bytes),
reduce PostgreSQL's shared memory usage, perhaps by reducing shared_buffers or max_connections.
If the request size is already small, it's possible that it is less than your kernel's SHMMIN parameter,
in which case raising the request size or reconfiguring SHMMIN is called for.
The PostgreSQL documentation contains more information about shared memory configuration.

Be aware of differing definitions

The definition of the SHMMAX/SHMALL parameters is slightly different between Linux and MacOS X. These are the definitions:

  • Linux: kernel.shmmax, kernel.shmall
  • MacOS X: kern.sysv.shmmax, kern.sysv.shmall

The sysctl command can be used to change the value temporarily. To permanently set the value, add an entry into /etc/sysctl.conf. The details are given below.

# Get the value of SHMMAX
sudo sysctl kern.sysv.shmmax
kern.sysv.shmmax: 4096
# Get the value of SHMALL
sudo sysctl kern.sysv.shmall
kern.sysv.shmall: 4096
# Set the value of SHMMAX
sudo sysctl -w kern.sysv.shmmax=16777216
kern.sysv.shmmax: 4096 -> 16777216<br>
# Set the value of SHMALL
sudo sysctl -w kern.sysv.shmall=16777216
kern.sysv.shmall: 4096 -> 16777216

# Get the value of SHMMAX
sudo sysctl kernel.shmmax
kernel.shmmax: 4096
# Get the value of SHMALL
sudo sysctl kernel.shmall
kernel.shmall: 4096
# Set the value of SHMMAX
sudo sysctl -w kernel.shmmax=16777216
kernel.shmmax: 4096 -> 16777216<br>
# Set the value of SHMALL
sudo sysctl -w kernel.shmall=16777216
kernel.shmall: 4096 -> 16777216

Remember: to make the change permanent add these values in

/etc/sysctl.conf

 

Huge Pages

Linux, by default uses 4K memory pages, BSD has Super Pages, whereas Windows has Large Pages. A page is a chunk of RAM that is allocated to a process. A process may own more than one page depending on its memory requirements. The more memory a process needs, the more pages that are allocated to it. The OS maintains a table of page allocation to processes. The smaller the page size, the bigger the table, the more time required to lookup a page in that page table. Therefore, huge pages make it possible to use large amount of memory with reduced overheads; fewer page look ups, fewer page faults, faster read/write operations through larger buffers. This results in improved performance.

PostgreSQL has support for bigger pages on Linux only. By default, Linux uses 4K of memory pages, so in cases where there are too many memory operations, there is a need to set bigger pages. Performance gains have been observed by using huge pages with sizes 2 MB and up to 1 GB. The size of Huge Page can be set boot time. You can easily check the huge page settings and utilization on your Linux box using cat /proc/meminfo | grep -i huge command.

Note: This is only for Linux, for other OS this operation is ignored$ cat /proc/meminfo | grep -i huge
AnonHugePages:         0 kB
ShmemHugePages:        0 kB
HugePages_Total:       0
HugePages_Free:        0
HugePages_Rsvd:        0
HugePages_Surp:        0
Hugepagesize:       2048 kB

In this example, although huge page size is set at 2,048 (2 MB), the total number of huge pages has a value of 0. which signifies that huge pages are disabled.

Script to quantify Huge Pages

This is a simple script which returns the number of Huge Pages required. Execute the script on your Linux box while your PostgreSQL is running. Ensure that $PGDATA environment variable is set to PostgreSQL’s data directory.

#!/bin/bash
pid=`head -1 $PGDATA/postmaster.pid`
echo "Pid:            $pid"
peak=`grep ^VmPeak /proc/$pid/status | awk '{ print $2 }'`
echo "VmPeak:            $peak kB"
hps=`grep ^Hugepagesize /proc/meminfo | awk '{ print $2 }'`
echo "Hugepagesize:   $hps kB"
hp=$((peak/hps))
echo Set Huge Pages:     $hp

The output of the script looks like this:

Pid:            12737
VmPeak:         180932 kB
Hugepagesize:   2048 kB
Set Huge Pages: 88

The recommended huge pages are 88, therefore you should set the value to 88.

sysctl -w vm.nr_hugepages= 88

Check the huge pages now, you will see no huge page is in use (HugePages_Free = HugePages_Total).

$ cat /proc/meminfo | grep -i huge
AnonHugePages:         0 kB
ShmemHugePages:        0 kB
HugePages_Total:      88
HugePages_Free:       88
HugePages_Rsvd:        0
HugePages_Surp:        0
Hugepagesize:       2048 kB

Now set the parameter huge_pages “on” in $PGDATA/postgresql.conf and restart the server.

$ cat /proc/meminfo | grep -i huge
AnonHugePages:         0 kB
ShmemHugePages:        0 kB
HugePages_Total:      88
HugePages_Free:       81
HugePages_Rsvd:       64
HugePages_Surp:        0
Hugepagesize:       2048 kB

Now you can see that a very few of the huge pages are used. Let’s now try to add some data into the database.

postgres=# CREATE TABLE foo(a INTEGER);
CREATE TABLE
postgres=# INSERT INTO foo VALUES(generate_Series(1,10000000));
INSERT 0 10000000

Let’s see if we are now using more huge pages than before.

$ cat /proc/meminfo | grep -i huge
AnonHugePages:         0 kB
ShmemHugePages:        0 kB
HugePages_Total:      88
HugePages_Free:       18
HugePages_Rsvd:        1
HugePages_Surp:        0
Hugepagesize:       2048 kB

Now you can see that most of the huge pages are in use.

Note: The sample value for HugePages used here is very low, which is not a normal value for a big production machine. Please assess the required number of pages for your system and set those accordingly depending on your systems workload and resources.

vm.swappiness

vm.swappiness is another kernel parameter that can affect the performance of the database. This parameter is used to control the swappiness (swapping pages to and from swap memory into RAM) behaviour on a Linux system. The value ranges from 0 to 100. It controls how much memory will be swapped or paged out. Zero means disable swap and 100 means aggressive swapping.

You may get good performance by setting lower values.

Setting a value of 0 in newer kernels may cause the OOM Killer (out of memory killer process in Linux) to kill the process. Therefore, you can be on safe side and set the value to 1 if you want to minimize swapping. The default value on a Linux system is 60. A higher value causes the MMU (memory management unit) to utilize more swap space than RAM, whereas a lower value preserves more data/code in memory.

A smaller value is a good bet to improve performance in PostgreSQL.

vm.overcommit_memory / vm.overcommit_ratio

Applications acquire memory and free that memory when it is no longer needed. But in some cases an application acquires too much memory and does not release it.  This can invoke the OOM killer. Here are the possible values for vm.overcommit_memory parameter with a description for each:

    1. Heuristic overcommit, Do it intelligently (default); based kernel heuristics
    2. Allow overcommit anyway
    3. Don’t over commit beyond the overcommit ratio.

Reference: https://www.kernel.org/doc/Documentation/vm/overcommit-accounting

vm.overcommit_ratio is the percentage of RAM that is available for overcommitment. A value of 50% on a system with 2 GB of RAM may commit up to 3 GB of RAM.

A value of 2 for vm.overcommit_memory yields better performance for PostgreSQL. This value maximises RAM utilization by the server process without any significant risk of getting killed by the OOM killer process. An application will be able to overcommit, but only within the overcommit ratio, thus reducing the risk of having OOM killer kill the process. Hence a value to 2 gives better performance than the default 0 value. However, reliability can be improved by ensuring that memory beyond an allowable range is not overcommitted. It avoid the risk of the process being killed by OOM-killer.

On systems without swap, one may experience problem when vm.overcommit_memory is 2.

https://www.postgresql.org/docs/current/static/kernel-resources.html#LINUX-MEMORY-OVERCOMMIT

vm.dirty_background_ratio / vm.dirty_background_bytes

The vm.dirty_background_ratio is the percentage of memory filled with dirty pages that need to be flushed to disk. Flushing is done in the background. The value of this parameter ranges from 0 to 100; however a value lower than 5 may not be effective and some kernels do not internally support it. The default value is 10 on most Linux systems. You can gain performance for write intensive operations with a lower ratio, which means that Linux flushes dirty pages in the background.

You need to set a value of vm.dirty_background_bytes depending on your disk speed.

There are no “good” values for these two parameters since both depend on the hardware. However, setting vm.dirty_background_ratio to 5 and vm.dirty_background_bytes to 25% of your disk speed improves performance by up to ~25% in most cases.

vm.dirty_ratio / dirty_bytes

This is same as vm.dirty_background_ratio / dirty_background_bytes except that the flushing is done in the foreground, blocking the application. So vm.dirty_ratio should be higher than vm.dirty_background_ratio. This will ensure that background processes kick in before the foreground processes to avoid blocking the application, as much as possible. You can tune the difference between the two ratios depending on your disk IO load.

Summing up

You can tune other parameters for performance, but the improvement gains are likely to be minimal. We must keep in mind that not all parameters are relevant for all applications types. Some applications perform better by tuning some parameters and some applications don’t. You need to find a good balance between these parameter configurations for the expected application workload and type, and OS behaviour must also be kept in mind when making adjustments. Tuning kernel parameters is not as easy as tuning database parameters: it’s harder to be prescriptive.

In my next post, I’ll take a look at tuning PostgreSQL’s database parameters. You might also enjoy this post:

Tuning PostgreSQL for sysbench-tpcc

 

The post Tune Linux Kernel Parameters For PostgreSQL Optimization appeared first on Percona Database Performance Blog.

Aug
01
2018
--

Saving With MyRocks in The Cloud

The main focus of a previous blog post was the performance of MyRocks when using fast SSD devices. However, I figured that MyRocks would be beneficial for use in cloud workloads, where storage is either slow or expensive.

In that earlier post, we demonstrated the benefits of MyRocks, especially for heavy IO workloads. Meanwhile, Mark wrote in his blog that the CPU overhead in MyRocks might be significant for CPU-bound workloads, but this should not be the issue for IO-bound workloads.

In the cloud the cost of resources is a major consideration. Let’s review the annual cost for the processing and storage resources.

 Resource cost/year, $   IO cost $/year   Total $/year 
c5.9xlarge  7881    7881
1TB io1 5000 IOPS  1500  3900    5400
1TB io1 10000 IOPS  1500  7800    9300
1TB io1 15000 IOPS  1500  11700  13200
1TB io1 20000 IOPS  1500  15600  17100
1TB io1 30000 IOPS  1500  23400  24900
3.4TB GP2 (10000 IOPS)  4800    4800

 

The scenario

The server version is Percona Server 5.7.22

For instances, I used c5.9xlarge instances. The reason for c5 was that it provides high performance Nitro virtualization: Brendan Gregg describes this in his blog post. The rationale for 9xlarge instances was to be able to utilize io1 volumes with a 30000 IOPS throughput – smaller instances will cap io1 throughput at a lower level.

I also used huge gp2 volumes: 3400GB, as this volume provides guaranteed 10000 IOPS even if we do not use io1 volumes. This is a cheaper alternative to io1 volumes to achieve 10000 IOPS.

For the workload I used sysbench-tpcc 5000W (50 tables * 100W), which for InnoDB gave about 471GB in storage used space.

For the cache I used 27GB and 54G buffer size, so the workload is IO-heavy.

I wanted to compare how InnoDB and RocksDB performed under this scenario.

If you are curious I prepared my terraform+ansible deployment files here: https://github.com/vadimtk/terraform-ansible-percona

Before jumping to the results, I should note that for MyRocks I used LZ4 compression for all levels, which in its final size is 91GB. That is five times less than InnoDB size. This alone provides operational benefits—for example to copy InnoDB files (471GB) from a backup volume takes longer than 1 hour, while it is much faster (five times) for MyRocks.

The benchmark results

So let’s review the results.

InnoDB versus MyRocks throughput in the cloud

Or presenting average throughput in a tabular form:

cachesize IOPS engine avg TPS
27 5000 innodb 132.66
27 5000 rocksdb 481.03
27 10000 innodb 285.93
27 10000 rocksdb 1224.14
27 10000gp2 innodb 227.19
27 10000gp2 rocksdb 1268.89
27 15000 innodb 436.04
27 15000 rocksdb 1839.66
27 20000 innodb 584.69
27 20000 rocksdb 2336.94
27 30000 innodb 753.86
27 30000 rocksdb 2508.97
54 5000 innodb 197.51
54 5000 rocksdb 667.63
54 10000 innodb 433.99
54 10000 rocksdb 1600.01
54 10000gp2 innodb 326.12
54 10000gp2 rocksdb 1559.98
54 15000 innodb 661.34
54 15000 rocksdb 2176.83
54 20000 innodb 888.74
54 20000 rocksdb 2506.22
54 30000 innodb 1097.31
54 30000 rocksdb 2690.91

 

We can see that MyRocks outperformed InnoDB in every single combination, but it is also important to note the following:

MyRocks on io1 5000 IOPS showed the performance that InnoDB showed in io1 15000 IOPS.

That means that InnoDB requires three times more in storage throughput. If we take a look at the storage cost, it corresponds to three times more expensive storage. Given that MyRocks requires less storage, it is possible to save even more on storage capacity.

On the most economical storage (3400GB gp2, which will provide 10000 IOPS) MyRocks showed 4.7 times better throughput.

For the 30000 IOPS storage, MyRocks was still better by 2.45 times.

However it is worth noting that MyRocks showed a greater variance in throughput during the runs. Let’s review the charts with 1 sec resolution for GP2 and io1 30000 IOPS storage:Throughput 1 sec resolution for GP2 and io1 30000 IOPS storage MyROCKS versus InnoDB

Such variance might be problematic for workloads that require stable throughput and where periodical slowdowns are unacceptable.

Conclusion

MyRocks is suitable and beneficial not only for fast SSD, but also for cloud deployments. By requiring less IOPS, MyRocks can provide better performance and save on the storage costs.

However, before evaluating MyRocks, make sure that your workload is IO-bound i.e. the working set is much bigger than available memory. For CPU-intensive workloads (where the working set fits into memory), MyRocks will be less beneficial or even perform worse than InnoDB (as described in the blog post A Look at MyRocks Performance)

 

 

 

The post Saving With MyRocks in The Cloud appeared first on Percona Database Performance Blog.

Powered by WordPress | Theme: Aeros 2.0 by TheBuckmaker.com