Jul
28
2016
--

On Uber’s Choice of Databases

A few days ago Uber published the article “Why Uber Engineering Switched from Postgres to MySQL”. I didn’t read the article right away because my inner nerd told me to do some home improvements instead. While doing so my mailbox was filling up with questions like “Is PostgreSQL really that lousy?”. Knowing that PostgreSQL is not generally lousy, these messages made me wonder what the heck is written in this article. This post is an attempt to make sense out of Uber’s article.

In my opinion Uber’s article basically says that they found MySQL to be a better fit for their environment as PostgreSQL. However, the article does a lousy job to transport this message. Instead of writing “PostgreSQL has some limitations for update-heavy use-cases” the article just says “Inefficient architecture for writes,” for example. In case you don’t have an update-heavy use-case, don’t worry about the problems described in Uber’s article.

In this post I’ll explain why I think Uber’s article must not be taken as general advice about the choice of databases, why MySQL might still be a good fit for Uber, and why success might cause more problems than just scaling the data store.

On UPDATE

The first problem Uber’s article describes in great, yet incomplete detail is that PostgreSQL always needs to update all indexes on a table when updating rows in the table. MySQL with InnoDB, on the other hand, needs to update only those indexes that contain updated columns. The PostgreSQL approach causes more disk IOs for updates that change non-indexed columns (“Write Amplification” in the article). If this is such a big problem to Uber, these updates might be a big part of their overall workload.

However, there is a little bit more speculation possible based upon something that is not written in Uber’s article: The article doesn’t mention PostgreSQL Heap-Only-Tuples (HOT). From the PostgreSQL source, HOT is useful for the special case “where a tuple is repeatedly updated in ways that do not change its indexed columns.” In that case, PostgreSQL is able to do the update without touching any index if the new row-version can be stored in the same page as the previous version. The latter condition can be tuned using the fillfactor setting. Assuming Uber’s Engineering is aware of this means that HOT is no solution to their problem because the updates they run at high frequency affect at least one indexed column.

This assumption is also backed by the following sentence in the article: “if we have a table with a dozen indexes defined on it, an update to a field that is only covered by a single index must be propagated into all 12 indexes to reflect the ctid for the new row”. It explicitly says “only covered by a single index” which is the edge case—just one index—otherwise PostgreSQL’s HOT would solve the problem.

[Side note: I’m genuinely curious whether the number of indexes they have could be reduced—index redesign in my challenge. However, it is perfectly possible that those indexes are used sparingly, yet important when they are used.]

It seems that they are running many updates that change at least one indexed column, but still relatively few indexed columns compared to the “dozen” indexes the table has. If this is a predominate use-case, the article’s argument to use MySQL over PostgreSQL makes sense.

On SELECT

There is one more statement about their use-case that caught my attention: the article explains that MySQL/InnoDB uses clustered indexes and also admits that “This design means that InnoDB is at a slight disadvantage to Postgres when doing a secondary key lookup, since two indexes must be searched with InnoDB compared to just one for Postgres.” I’ve previously written about this problem (“the clustered index penalty”) in context of SQL Server.

What caught my attention is that they describe the clustered index penalty as a “slight disadvantage”. In my opinion, it is a pretty big disadvantage if you run many queries that use secondary indexes. If it is only a slight disadvantage to them, it might suggest that those indexes are used rather seldom. That would mean, they are mostly searching by primary key (then there is no clustered index penalty to pay). Note that I wrote “searching” rather than “selecting”. The reason is that the clustered index penalty affects any statement that has a where clause—not just select. That also implies that the high frequency updates are mostly based on the primary key.

Finally there is another omission that tells me something about their queries: they don’t mention PostgreSQL’s limited ability to do index-only scans. Especially in an update-heavy database, the PostgreSQL implementation of index-only scans is pretty much useless. I’d even say this is the single issue that affects most of my clients. I’ve already blogged about this in 2011. In 2012, PostgreSQL 9.2 got limited support of index-only scans (works only for mostly static data). In 2014 I even raised one aspect of my concern at PgCon. However, Uber doesn’t complain about that. Select speed is not their problem. I guess query speed is generally solved by running the selects on the replicas (see below) and possibly limited by mostly doing primary key side.

By now, their use-case seems to be a better fit for a key/value store. And guess what: InnoDB is a pretty solid and popular key/value store. There are even packages that bundle InnoDB with some (very limited) SQL front-ends: MySQL and MariaDB are the most popular ones, I think. Excuse the sarcasm. But seriously: if you basically need a key/value store and occasionally want to run a simple SQL query, MySQL (or MariaDB) is a reasonable choice. I guess it is at least a better choice than any random NoSQL key/value store that just started offering an even more limited SQL-ish query language. Uber, on the other hand just builds their own thing (“Schemaless”) on top of InnoDB and MySQL.

On Index Rebalancing

One last note about how the article describes indexing: it uses the word “rebalancing” in context of B-tree indexes. It even links to a Wikipedia article on “Rebalancing after deletion.” Unfortunately, the Wikipedia article doesn’t generally apply to database indexes because the algorithm described on Wikipedia maintains the requirement that each node has to be at least half-full. To improve concurrency, PostgreSQL uses the Lehman, Yao variation of B-trees, which lifts this requirement and thus allows sparse indexes. As a side note, PostgreSQL still removes empty pages from the index (see slide 15 of “Indexing Internals”). However, this is really just a side issue.

What really worries me is this sentence: “An essential aspect of B-trees are that they must be periodically rebalanced, …” Here I’d like to clarify that this is not a periodic process one that runs every day. The index balance is maintained with every single index change (even worse, hmm?). But the article continues “…and these rebalancing operations can completely change the structure of the tree as sub-trees are moved to new on-disk locations.” If you now think that the “rebalancing” involves a lot of data moving, you misunderstood it.

The important operation in a B-tree is the node split. As you might guess, a node split takes place when a node cannot host a new entry that belongs into this node. To give you a ballpark figure, this might happen once for about 100 inserts. The node split allocates a new node, moves half of the entries to the new node and connects the new node to the previous, next and parent nodes. This is where Lehman, Yao save a lot of locking. In some cases, the new node cannot be added to the parent node straight away because the parent node doesn’t have enough space for the new child entry. In this case, the parent node is split and everything repeats.

In the worst case, the splitting bubbles up to the root node, which will then be split as well and a new root node will be put above it. Only in this case, a B-tree ever becomes deeper. Note that a root node split effectively shifts the whole tree down and therefore keeps the balance. However, this doesn’t involve a lot of data moving. In the worst case, it might touch three nodes on each level and the new root node. To be explicit: most real world indexes have no more than 5 levels. To be even more explicit: the worst case—root node split—might happen about five times for a billion inserts. On the other cases it will not need to go the whole tree up. After all, index maintenance is not “periodic”, not even very frequent, and is never completely changing the structure of the tree. At least not physically on disk.

On Physical Replication

That brings me to the next major concern the article raises about PostgreSQL: physical replication. The reason the article even touches the index “rebalancing” topic is that Uber once hit a PostgreSQL replication bug that caused data corruption on the downstream servers (the bug “only affected certain releases of Postgres 9.2 and has been fixed for a long time now”).

Because PostgreSQL 9.2 only offers physical replication in core, a replication bug “can cause large parts of the tree to become completely invalid.” To elaborate: if a node split is replicated incorrectly so that it doesn’t point to the right child nodes anymore, this sub-tree is invalid. This is absolutely true—like any other “if there is a bug, bad things happen” statement. You don’t need to change a lot of data to break a tree structure: a single bad pointer is enough.

The Uber article mentions other issues with physical replication: huge replication traffic—partly due to the write amplification caused by updates—and the downtime required to update to new PostgreSQL versions. While the first one makes sense to me, I really cannot comment on the second one (but there were some statements on the PostgreSQL-hackers mailing list).

Finally, the article also claims that “Postgres does not have true replica MVCC support.” Luckily the article links to the PostgreSQL documentation where this problem (and remediations) are explained. The problem is basically that the master doesn’t know what the replicas are doing and might thus delete data that is still required on a replica to complete a query.

According to the PostgreSQL documentation, there are two ways to cope with this issue: (1) delaying the application of the replication stream for a configurable timeout so the read transaction gets a chance to complete. If a query doesn’t finish in time, kill the query and continue applying the replication stream. (2) configure the replicas to send feedback to the master about the queries they are running so that the master does not vacuum row versions still needed by any slave. Uber’s article rules the first option out and doesn’t mention the second one at all. Instead the article blames the Uber developers.

On Developers

To quote it in all its glory: “For instance, say a developer has some code that has to email a receipt to a user. Depending on how it’s written, the code may implicitly have a database transaction that’s held open until after the email finishes sending. While it’s always bad form to let your code hold open database transactions while performing unrelated blocking I/O, the reality is that most engineers are not database experts and may not always understand this problem, especially when using an ORM that obscures low-level details like open transactions.”

Unfortunately, I understand and even agree with this argument. Instead of “most engineers are not database experts” I’d even say that most developers have very little understanding of databases because every developer that touches SQL needs to know about transactions—not just database experts.

Giving SQL training to developers is my main business. I do it at companies of all sizes. If there is one thing I can say for sure is that the knowledge about SQL is ridiculously low. In context of the “open transaction” problem just mentioned I can conform that hardly any developer even knows that read only transactions are a real thing. Most developers just know that transactions can be used to back out writes. I’ve encountered this misunderstanding often enough that I’ve prepared slides to explain it and I just uploaded these slides for the curious reader.

On Success

This leads me to the last problem I’d like to write about: the more people a company hires, the closer their qualification will be to the average. To exaggerate, if you hire the whole planet, you’ll have the exact average. Hiring more people really just increases the sample size.

The two ways to beat the odds are: (1) Only hire the best. The difficult part with this approach is to wait if no above-average candidates are available; (2) Hire the average and train them on the job. This needs a pretty long warm-up period for the new staff and might also bind existing staff for the training. The problem with both approaches is that they take time. If you don’t have time—because your business is rapidly growing—you have to take the average, which doesn’t know a lot about databases (empirical data from 2014). In other words: for a rapidly growing company, technology is easier to change than people.

The success factor also affects the technology stack as requirements change over time. At an early stage, start-ups need out-of-the-box technology that is immediately available and flexible enough to be used for their business. SQL is a good choice here because it is actually flexible (you can query your data in any way) and it is easy to find people knowing SQL at least a little bit. Great, let’s get started! And for many—probably most—companies, the story ends here. Even if they become moderately successful and their business grows, they might still stay well within the limits of SQL databases forever. Not so for Uber.

A few lucky start-ups eventually outgrow SQL. By the time that happens, they have access to way more (virtually unlimited?) resources and then…something wonderful happens: They realize that they can solve many problems if they replace their general purpose database by a system they develop just for their very own use-case. This is the moment a new NoSQL database is born. At Uber, they call it Schemaless.

On Uber’s Choice of Databases

By now, I believe Uber did not replace PostgreSQL by MySQL as their article suggests. It seems that they actually replaced PostgreSQL by their tailor-made solution, which happens to be backed by MySQL/InnoDB (at the moment).

It seems that the article just explains why MySQL/InnoDB is a better backend for Schemaless than PostgreSQL. For those of you using Schemaless, take their advice! Unfortunately, the article doesn’t make this very clear because it doesn’t mention how their requirements changed with the introduction of Schemaless compared to 2013, when they migrated from MySQL to PostgreSQL.

Sadly, the only thing that sticks in the reader’s mind is that PostgreSQL is lousy.

If you like my way of explaining things, you’ll love my book.

Original title and author: “On Uber’s Choice of Databases” by Markus Winand.

Sep
25
2015
--

Modern SQL: Inaugural Post


I've just launched my new website modern-sql.com. It's very small right now—just six content pages—but it will grow over next month and years and might eventually become a book like Use-The-Inde-Luke.com did. So I though I'd better get you on board right now so you can grow as the site grows.

So what is modern SQL about? Yet another SQL reference? Absolutely not. There are definitively enough references out there. And they all suffer from the same issues:

  • They hardly cover more than entry-level SQL-92. Some tutorials don't even mention that they describe a proprietary dialect.

  • The examples just show the syntax but not how to solve real-world problems.

  • They don't document the availability of the features amongst different database products.

No question, the latter ones are a consequence of the first one. However, modern SQL is different:

  • modern SQL covers SQL:2011—the current release of the ISO SQL standard. But it adheres to the fact that many databases are developed against elder releases or only support a subset of the standard.

  • modern SQL shows how to use the most recent SQL features to solve real world problems. It also provides “conforming alternatives” as a way to solve the same problem using other (often elder) standard methods. If necessary and possible it will also show “proprietary alternatives.”

    Note that there is a hierarchy: the recommended (most idiomatic) approach is shown first, standard conforming alternatives next and proprietary alternatives last but only if inevitable.

  • modern SQL documents the availability of the features amongst six SQL databases (the example is about values):

Go here if you don’t see an image above.

Click on a feature (e.g., “valid where select is valid”) to see how the availability of the features has evolved.

There you can see that SQLite just recently started to accept values where select is valid. The timeline view also documents the last checked version for those databases that don't support a feature.

Inevitably, modern SQL will become both: an homage to the SQL standard and a rant about its poor adaptation. The availability documentation and the above mentioned alternative approaches (conforming or proprietary) are there to keep the “rant” a productive one. Look at the “select without from” use-case to get the idea.

This is just the first step of a long journey. I invite you to follow it via Twitter, Email or RSS.

Original title and author: “Modern SQL: Inaugural Post” by Markus Winand.

Aug
05
2014
--

We need tool support for keyset pagination

Did you know pagination with offset is very troublesome but easy to avoid?

offset instructs the databases skip the first N results of a query. However, the database must still fetch these rows from the disk and bring them in order before it can send the following ones.

This is not an implementation problem, it’s the way offset is designed:

…the rows are first sorted according to the <order by clause> and then limited by dropping the number of rows specified in the <result offset clause> from the beginning…

In other words, big offsets impose a lot of work on the database—no matter whether SQL or NoSQL.

But the trouble with offset doesn’t stop here: think about what happens if a new row is inserted between fetching two pages?

When using offset? to skip the previously fetched entries?, you’ll get duplicates in case there were new rows inserted between fetching two pages?. There are other anomalies possible too, this is just the most common one.

This is not even a database problem, it is the way frameworks implement pagination: they just say which page number to fetch or how many rows to skip. With this information alone, no database can do any better.

Life Without OFFSET

Now imagine a world without these problems. As it turns out, living without offset is quite simple: just use a where clause that selects only data you haven’t seen yet.

For that, we exploit the fact that we work on an ordered set—you do have an order by clause, ain’t you? Once there is a definite sort order, we can use a simple filter to only select what follows the entry we have see last:

SELECT ...
  FROM ...
 WHERE ...
   AND id < ?last_seen_id
 ORDER BY id DESC
 FETCH FIRST 10 ROWS ONLY

This is the basic recipe. It gets more interesting when sorting on multiple columns, but the idea is the same. This recipe is also applicable to many NoSQL systems.

This approach—called seek method or keyset pagination—solves the problem of drifting results as illustrated above and is even faster than offset. If you’d like to know what happens inside the database when using offset or keyset pagination, have a look at these slides (benchmarks, benchmarks!):

On slide 43 you can also see that keyset pagination has some limitations: most notably that you cannot directly navigate to arbitrary pages. However, this is not a problem when using infinite scrolling. Showing page number to click on is a poor navigation interface anyway—IMHO.

If you want to read more about how to properly implement keyset pagination in SQL, please read this article. Even if you are not involved with SQL, it’s worth reading that article before starting to implement anything.

But the Frameworks…

The main reason to prefer offset over keyset pagination is the lack of tool support. Most tools offer pagination based on offset, but don’t offer any convenient way to use keyset pagination.

Please note that keyset pagination affects the whole technology stack up to the JavaScript running in the browser doing AJAX for infinite scrolling: instead of passing a simple page number to the server, you must pass a full keyset (often multiple columns) down to the server.

The hall of fame of frameworks that do support keyset pagination is rather short:

This is where I need your help. If you are maintaining a framework that is somehow involved with pagination, I ask you, I urge you, I beg you, to build in native support for keyset pagination too. If you have any questions about the details, I’m happy to help (forum, contact form, Twitter)!

Even if you are just using software that should support keyset pagination such as a content management system or webshop, let the maintainers know about it. You might just file a feature request (link to this page) or, if possible, supply a patch. Again, I’m happy to help out getting the details right.

Take WordPress as an example.

Spread the Word

The problem with keyset pagination is not a technical one. The problem is just that it is hardly known in the field and has no tool support. If you like the idea of offset-less pagination, please help spreading the word. Tweet it, share it, mail it, you can even re-blog this post (CC-BY-NC-ND). Translations are also welcome, just contact me beforehand—I’ll include a link to the translation on this page too!

Oh, and if you are blogging, you could also add a banner on your blog to make your readers aware of it. I’ve prepared a NoOffset banner gallery with some common banner formats. Just pick what suits you best.

Original title and author: “We need tool support for keyset pagination” by Markus Winand.

Feb
20
2014
--

Results of the SQL Performance Quiz: 60% fail

In 2011, I’ve launched the “The 3-Minute Test: What do you know about SQL performance.” It consists of five questions that follow a simple pattern: each question shows a query/index pair and asks if it demonstrates proper indexing or not. Till today, this test has become one of the most popular features on Use The Index, Luke and has been completed more than 28,000 times.

Note

Just in case you got curious, please be aware that this article is a spoiler. You might want to do the quiz yourself before continuing.

Although the quiz was created for educational purposes, I was wondering if I could get some interesting figures out of these 28,000 results. And I think I could. However, there are several things to keep in mind when looking at these figures. First, the quiz uses the surprise factor to catch attention. That means, three questions show cases that look fine, but aren’t. One question does it the other way around and shows an example that might look dangerous, but isn’t. There is only one question where the correct answer is in line with the first impression. Another effect that might affect the significance of the results is that there was no representative selection of participants. Everybody can take the quiz. You can even do it multiple times and will probably get a better result the second time. Just keep in mind that the quiz was never intended to be used for scientific research upon the indexing knowledge in the field. Nevertheless, I think that the size of the dataset is still good enough to get an impression.

Below I’ll show two different statistics for each question. First, the average rate at which this question was correctly answered. Second, how this figure varies for users of MySQL, Oracle, PostgreSQL and SQL Server databases. In other word, it says if e.g. MySQL users are more knowledgeable about indexing as PostgreSQL users. Spoiler: It’s the other way around. The only reason I’m in the lucky position to have this data is that the test sometimes uses vendor specific syntax. For example, what is LIMIT in MySQL and PostgreSQL is TOP in SQL Server. Therefore, the participants have to select a database at the beginning so that the questions are shown in the native syntax of that product.

Question 1: Functions in the WHERE Clause

Is the following SQL good or bad practice from a performance perspective?

Searching for all rows of the year 2012:

CREATE INDEX tbl_idx ON tbl (date_column);

SELECT text, date_column
  FROM tbl
 WHERE TO_CHAR(date_column, 'YYYY') = '2012';

This is an example where the code uses functions specific to the Oracle and PostgreSQL databases. For MySQL, the question uses YEAR(date_column) and for SQL Server datepart(yyyy, date_column). Of course, I could have used EXTRACT(YEAR date_column), but I thought it is better to use the most common syntax.

The participants have these options:

  • Good practice — There is no major improvement possible.

  • Bad practice — There is a major improvement possible.

The correct answer is “bad practice” because the index on date_column cannot be used when searching on something derived from date_column. If you don’t believe that, please have a look at the proof scripts or the explanations shown at the end of the test. They also contain links to the Use The Index, Luke pages explaining it in more detail.

However, if you didn’t know how functions effectively “disable” indexes, you are not alone. Only about two-thirds gave the correct answer. And as for every multiple choice test, there is a certain probably to pick the correct answer by chance. In this cases it’s a 50/50 chance — by no means negligible. I’ve marked this “guessing score” in the figure to emphasize that.

This is one of the most common problems I see in my everyday work. The same problem can also hit you with VARCHAR fields when using UPPER, TRIM or the like. Please keep in mind: whenever you are applying functions on columns in the where clause, an index on the column itself is no longer useful for this query.

Although this result is quite disappointing — I mean it’s not much better than guessing — it is no surprise to me. What is a surprise for me is how the result differs amongst the users of different databases.

As a matter of fact, MySQL users just score 55% — almost as low as the “guessing score”. PostgreSQL users, on the other hand, get a score of 83%.

An effect that might explain this result is that MySQL doesn’t support function-based indexes while Oracle and PostgreSQL do. Function-based indexes allow you to index expressions like TO_CHAR(date_column, 'YYYY'). Although it is not the recommended solution for this case, the pure existence of this feature might make users of the Oracle and PostgreSQL database more aware of this problem. SQL Server offers a similar feature: although it cannot index expressions directly, you can create a so-called computed column on expressions, which in turn can be indexed.

Although support for function-based indexes might explain why MySQL users underperformed, it is still no excuse. The shown query/index pair is bad — no matter whether the database supports function-based indexes or not. And the major improvement is also possible without function-based indexes:

SELECT text, date_column
  FROM tbl
 WHERE date_column >= TO_DATE('2012-01-01', 'YYYY-MM-DD')
   AND date_column <  TO_DATE('2013-01-01', 'YYYY-MM-DD');

The index doesn’t need to be changed. This solution is very flexible because it supports queries for different ranges too — e.g. by week or month. This is the recommended solution.

As a curious guy, I’d love to know how many of the people who correctly answered this question were thinking of the sub-optimal solution to use a function-based index. I’d rate this solution half-correct at best.

Question 2: Indexed Top-N Queries

Is the following SQL good or bad practice from a performance perspective?

To find the most recent row:

CREATE INDEX tbl_idx ON tbl (a, date_column);

SELECT id, a, date_column
  FROM tbl
 WHERE a = ? 
 ORDER BY date_column DESC
 LIMIT 1;

Note that the question mark is a placeholder, because I always encourage developers to use bind parameters.

As participant, you have these two options again:

  • Good practice — There is no major improvement possible.

  • Bad practice — There is a major improvement possible.

This is the question that is supposed to look dangerous, but isn’t. Generally, it seems like people believe order by must always sort the data. This index, however, eliminates the need to sort the data entirely so that the query is basically as fast as a unique index lookup. Please find a detailed explanation of this trick here.

The result is very close to the “guessing score” which I interpret as “people don’t have a clue about it.”

This result is particularly sad because I’ve seen people building caching tables, regularly refilled by a cron jobs, to avoid queries like this. Interestingly, the cron job tends to cause performance problems because it is running in rather short intervals to make sure the cache table has fresh data. However, the right index is often the better option in the first place.

Here I have to mention that the Oracle database needs the most special syntax for this trick. Up till version 12c released in 2013, the Oracle database did not offer a handy shortcut such as LIMIT or TOP. Instead, you have to use the ROWNUM pseudo-column like this:

SELECT *
  FROM (
        SELECT id, date_column
          FROM tbl
         WHERE a = :a
         ORDER BY date_column DESC
       )
 WHERE rownum <= 1;

The extra complexity of this query might have pushed Oracle users more heavily towards the wrong answer — actually below guessing score!

Another argument I’m getting in response to this question is that including the ID column in the index would allow an index-only scan. Although this is correct, I don’t consider not doing so a “bad practice” because the query touches only one row anyway. An index-only scan could just avoid a single table access. Obviously there are cases were you need that improvement, but in the general case I’d consider it a premature optimization. But that’s just my opinion. However, following this argument might give us an idea why PostgreSQL users got the best score (again): PostgreSQL did not have index-only scans until version 9.2, which was released in September 2012. As a result, PostgreSQL users could not fall into this trap of thinking an index-only scan can bring major improvements in this case. Undoubtedly, the term “major” is troublesome in this context.

Question 3: Index Column Order

Is the following SQL good or bad practice from a performance perspective?

Two queries, searching by a common column:

CREATE INDEX tbl_idx ON tbl (a, b);

SELECT id, a, b
  FROM tbl
 WHERE a = ?
   AND b = ?;


SELECT id, a, b
  FROM tbl
 WHERE b = ?;

The same options:

  • Good practice — There is no major improvement possible.

  • Bad practice — There is a major improvement possible.

The answer is “bad practice,” because the second query cannot use the index properly. Changing the index column order to (b, a) would, however, allow both queries to use this index in the most efficient way. You can find a full explanation here. Adding a second index on (b) would be a poor solution due to the overhead it adds for no reason. Unfortunately, I don’t know how many would have done that.

The result is disappointing, but in line with my expectations — just 12.5% above guessing score.

This is also a problem I see almost every day. People just don’t understand how multi-column indexes work.

All the per-database results are pretty close together. Maybe because there is no syntactic difference or well-known database features that could have a major influence the answer. Less known features like Oracle’s SKIP SCAN could have a minor impact, of course. Generally, the index-only scan could have a influence too, but it pushes the participants to the “right” answer this time.

After all, this result might just say that users of some databases know more about indexing than others. Interestingly, PostgreSQL users get the best score for the third time.

Question 4: LIKE Searches

Is the following SQL troublesome or bulletproof from a performance perspective?

Searching within a string:

CREATE INDEX tbl_idx ON tbl (text);

SELECT id, text
  FROM tbl
 WHERE text LIKE '%TERM%';

I’ve phrased the options differently this time:

  • Bulletproof: It will always run fast.

  • Troublesome: There is high risk for performance problems.

And the correct answer is “troublesome” because the LIKE pattern uses a leading wild card. Otherwise, if it would use the pattern 'TERM%', it could use the index very efficiently. Have a look at this visual explanation for details.

The results of this question are promising. Here I feel safe to say most people know that LIKE is not for full-text search.

The segregated results are also within a very narrow corridor:

It is, however, strange that PostgreSQL users under performed at this question. A closer look at how the question is presented to PostgreSQL users might give an explanation:

CREATE INDEX tbl_idx ON tbl (text varchar_pattern_ops);

SELECT id, text
  FROM tbl
 WHERE text LIKE '%TERM%';

Note the addition to the index (varchar_pattern_ops). In PostgreSQL, this special operator class is required to make the index usable for postfix wild card searches (e.g. 'TERM%'). I added this because I aimed to find out if people know about the problem of leading wild cards in LIKE expressions. Without the operator class, there are two reasons why it doesn’t work: (1) the leading wild card; (2) the missing operator class. I though that would be too obvious. Retrospectivley, I believe some participants interpreted this operator class as “magic that makes it work” and thus took the wrong answer.

Question 5a: Index-Only Scan

Question five is a little bit tricky, because PostgreSQL did not support index-only scans when the quiz was created. For that reason, there are two variants of question five: one about index-only scans for users of MySQL, Oracle and SQL Server databases. And another question about index column order for PostgresSQL users. Both results are presented here, but the segregated data is limited for obvious reasons. We start with the question about index-only scans:

How will the change affect query performance?

Current situation, selecting about hundred rows out of a million:

CREATE INDEX tab_idx ON tbl (a, date_column);

SELECT date_column, count(*)
  FROM tbl
 WHERE a = 123
 GROUP BY date_column;

Changed query, selecting about ten rows out of a million:

SELECT date_column, count(*)
  FROM tbl
 WHERE a = 123
   AND b = 42
 GROUP BY date_column;

Note the added where clause in the second query.

This question is also special because it offers four options:

  • Query performance will roughly stay the same (+/- 10%)

  • Depends on the data.

  • The query will be much slower (impact >10%)

  • The query will be much faster (impact >10%)

When I created the quiz, I was well aware that 50/50 questions have a tendency to render the score meaningless. This question is a trade-off between keeping the questions easy to gasp and answer (questions 1–4) and giving a more accurate result.

To make it short, the correct answer is “the query will be much slower.” The reason is that the original query could use an index-only scan — that is, the query could be answered only using data from the index without fetching any data from the actual table. The second query, however, needs to check column B too, which is not in the index. Consequently, the database must take some extra effort to fetch the candidate rows from the table to evaluate the expression on B That is, it must fetch at least 100 rows from the table — the number of rows returned by the first query. Due to the group by there are probably more rows to fetch. A quite considerable extra effort that will make the query much slower. A more exhaustive explanation is here.

With that number of options, the overall score drops significantly to about 39% or 14% above guessing score.

Still I think saying that about 39% of participants knew the right answers is wrong. They gave the right answer, but there was still a probability of 25% that they gave the right answer without knowing it.

The segregation by database is quite boring. Conspicuously boring.

However, with four options, it is also interesting to see how people actually answered.

That caught me by surprise. Both options “roughly the same” and “depends on the data” got about 25% — the guessing probably. Does this mean half of the participants were guessing? As it is the last question some participants might have picked a random option just to get through. Quite possible. However, the correct option “much slower” got 38.8% at the cost of the “much faster” option, which got just 10.9%.

My intention with this question was to trap people into the “much faster” option because fetching less data should be faster — except when breaking an index-only scan. The only hypothesis I have for this result is that people might have got the idea that the obvious answer isn’t the correct one. That, however, would mean the 39% score doesn’t prove anything about the knowledge of this phenomenon in the field.

Another effect that I expected to have an impact is that “it is always depending on the data.” Of course there are edge cases where the performance impact might roughly stay the same — e.g., when all inspected rows are in the same table block. However, this is rather unlikely — just because there would be no point in adding the date_column for an index-only scan in the first place.

Question 5b: Index Column Order and Range Operators

This question is only shown to PostgreSQL users.

Is the following SQL good or bad practice from a performance perspective?

Searching for entries in state X, not older than 5 years.

CREATE INDEX tbl_idx ON tbl (date_column, state);

SELECT id, date_column, state
  FROM tbl
 WHERE date_column >= CURRENT_DATE - INTERVAL '5' YEAR
   AND state = 'X';

(365 rows)

The data distribution is as follows:

SELECT count(*)
  FROM tbl
 WHERE date_column >= CURRENT_DATE - INTERVAL '5' YEAR;

 count 
-------
  1826

SELECT count(*)
  FROM tbl
 WHERE state = 'X';

 count 
-------
 10000

There is an index with two columns and a query that filters on both of them. One filter uses an equals operator, the other a greater than or equal operator. When using each filter individually the query returns many more rows as when combining both filters.

The options are:

  • Good practice — There is no major improvement possible.

  • Bad practice — There is a major improvement possible.

And the correct answer is “bad practice” because the column order in the index is the wrong way around. The general rule is that index columns can be used efficiently from the left hand side as long as they are used with equals operators. Further, one column can be used efficiently with a range operator. However, the first range operator effectively cuts off the index so that further columns cannot be used efficiently anymore. With efficiently I mean as an index access predicate. Please find a visualization here.

With the original index shown above, the query has to fetch 1826 entries from the index (those matching the date_column filter) and check each of them for the value of the state column. If we turn the index column order around, the database can use both filters efficiently (= as access predicate) and directly limit the index access to those 365 rows of interest.

And this is how people answered:

Wait a moment, that’s below the guessing score! It’s not just people don’t know, they believe the wrong thing. However, I must admit that the term “major” is very problematic again. When I run this example, the speed-up I get is just 70%. Not even twice as fast.

Overall Score: How Many Passed the Test?

Looking at each question individually is interesting, but doesn’t tell us how many participants managed to answer all five questions correctly, for example. The following chart has that information.

Finally, I’d like to boil this chart down to a single figure: how many participants “passed” the test?

Considering that the test has only five questions, out of which four are 50/50 questions, I think it is fair to say three correct answers isn’t enough to pass the test. Requiring five correct answers would quite obviously be asking for too much. Requiring four correct answers to “pass” the test is therefore the only sensible choice I see. Using this definition, only 38.2% passed the test. The chance to pass the test by guessing is still 12.5%.

If you like this article and want to learn about proper indexing, SQL Performance Explained is for you.

Original title and author: “Results of the SQL Performance Quiz: 60% fail” by Markus Winand.

Jan
16
2014
--

Unreasonable Defaults: Primary Key as Clustering Key

As you might have noticed—at least if you have read SQL Performance Explained—I don’t think clustered indexes are as useful as most people believe. That is mainly because it is just too darn difficult to choose a good clustering key. As a matter of fact, choosing a good—the “right”—clustering key is almost impossible if there are more than one or two indexes on the table. The result is that most people just stick to the default—which is the primary key. Unfortunately, this is almost always the worst possible choice.

In this article I explain the beast named clustered index and all it’s downsides. Although this article uses SQL Server as demo database, the article is equally relevant for MySQL/MariaDB with InnoDB and the Oracle database when using index-organized tables.

Recap: What is a clustered index

The idea of clustered indexes is to store a complete table in a B-tree structure. If a table has a clustered index, it basically means the index is the table. A clustered index has a strict row order like any other B-tree index: it sorts the rows according to the index definition. In case of clustered indexes we call the columns that define the index order the clustering key. The alternative way to store a table is as a heap with no particular row order. Clustered indexes have the advantage that they support very fast range scans. That is, they can fetch rows with the same (or similar) clustering key value quickly, because those rows are physically stored next to each other (clustered)—often in the same data page. When it comes to clustered indexes it is very important to understand that there is no separate place where the table is stored. The clustered index is the primary table store—thus you can have only one per table. That’s the definition of clustered indexes—it’s a contrast to heap tables.

There is, however, another contrast to clustered indexes: non-clustered indexes. Just because of the naming, this is the more natural counterpart to clustered indexes to many people. From this perspective, the main difference is that querying a clustered index is always done as index-only scan. A non-clustered index, on the other hand, has just a sub-set of the table columns so it causes extra IOs for getting the missing columns from the primary table store if needed. Every row in a non-clustered index has a reference to the very same row in the primary table store for this purpose. In other words, using a non-clustered index generally involves resolving an extra level of indirection. Generally, I said. In fact it is pretty easy to avoid this overhead by including all needed columns in the non-clustered index. In that case the database can find all the required data in the index and just doesn’t resolve the extra level of indirection. Even non-clustered indexes can be used for index-only scans—making them as fast as clustered indexes. Isn’t that what matters most?

Note

The index-only scan is the important concept—not the clustered index.

Later in the article, we’ll see that there is a duality among these aspects of clustered indexes: being a table store (in contrast to heap tables) or being an index that happens to have all table columns. Unfortunately, this “table-index duality” can be as confusing as the wave-particle duality of light. Hence, I’ll explicitly state which aspect appears at the time whenever necessary.

The costs of an extra level of indirection

When it comes to performance, an extra level of indirection is not exactly desirable because dereferencing takes time. The crucial point here is that the costs of dereferencing is greatly affected by the way the table is physically stored—either as heap table or as clustered index.

The following figures explain his phenomenon. They visualize the process to execute a query to fetch all SALES rows from 2012-05-23. The first figure uses a non-clustered index on SALE_DATE together with a heap table (= a table that doesn’t have a clustered index):

Note that there is a single Index Seek (Non-Clustered) operation on the non-clustered index that causes two RID Lookups into the heap table (one for each matched row). This operation reflects dereferencing the extra indirection to load the remaining columns from the primary table store. For heap tables, a non-clustered index uses the physical address (the so-called RID) to refer to the very same row in the heap table. In the worst case the extra level of indirection causes one additional read access per row (neglecting forwarding).

Now let’s look at the same scenario with a clustered index. More precisely, when using a non-clustered index in presence of a clustered-index on SALE_ID—that is, the primary key as clustering key.

Note that the definition of the index on the left hand side has not changed: it’s still a non-clustered index on SALE_DATE. Nevertheless, the pure presence of the clustered index affects they way the non-clustered index refers to the primary table storage—which is the clustered index! Unlike heap tables, clustered indexes are “living creatures” that move rows around as needed to maintain their properties (i.e.: the row order and tree balance). Consequently the non-clustered index can’t use the physical address as reference anymore because it could change at any time. Instead, it uses the clustering key SALE_ID as reference. Loading the missing columns from the primary table store (=clustered index) now involves a full B-tree traversal for each row. That are several extra IOs per row as opposed to a single extra IO in case of heap tables.

I also refer to this effect as the “clustered index penalty”. This penalty affects all non-clustered indexes on tables that have a clustered index.

Note

For index-organized tables, the Oracle database also stores the physical address of that row (=guess ROWID) along with the clustering key in the secondary indexes (=non-clustered indexes). If the row is found at this address, the database doesn’t need to perform the B-tree traversal. If not, however, it has performed one more IO for nothing.

How bad is it?

Now that we have seen that clustered indexes cause a considerable overhead for non-clustered indexes, you’ll probably like to know how bad it is? The theoretic answer has been given above—one IO for the RID Lookup compared to several IOs for the Key Lookup (Clustered). However, as I learned the hard way when giving performance training, people tend to ignore, deny, or just don’t believe that fact. Hence, I’ll show you a demo.

Obviously, I’ll use two similar tables that just vary by the table storage they use (heap vs. clustered). The following listing shows the pattern to create these tables. The part in square brackets makes the difference to either use a heap table or clustered index as table store.

CREATE TABLE sales[nc] (
    sale_id      NUMERIC       NOT NULL,
    employee_id  NUMERIC       NOT NULL,
    eur_value    NUMERIC(16,2) NOT NULL,
    SALE_DATE    DATE          NOT NULL
    CONSTRAINT salesnc_pk
       PRIMARY KEY [nonclustered]  (sale_id),
);

CREATE INDEX sales[nc]2 ON sales[nc] (sale_date);

I’ve filled these tables with 10 million rows for this demo.

The next step is to craft a query that allows us to measure the performance impact.

SELECT TOP 1 * 
  FROM salesnc
 WHERE sale_date > '2012-05-23'
 ORDER BY sale_date

The whole idea behind this query is to use the non-clustered index (hence filtering and ordering on SALE_DATE) to fetch a variable number of rows (hence TOP N) from the primary table store (hence select * to make sure it’s not executed as index-only scan).

Now lets look what happens if we SET STATISTICS IO ON and run the query against the heap table:

Scan count 1, logical reads 4, physical reads 0, read-ahead reads 0,…

The interesting figure is the logical reads count of four. There were no physical reads because I have executed the statement twice so it is executed from the cache. Knowing that we have fetched a single row from a heap table, we can already conclude that the tree of the non-clustered index must have three levels. Together with one more logical read to access the heap table we get the total of four logical reads we see above.

To verify this hypothesis, we can change the TOP clause to fetch two rows:

SELECT TOP 2 * 
  FROM salesnc
 WHERE sale_date > '2012-05-23'
 ORDER BY sale_date
Scan count 1, logical reads 5, physical reads 0, read-ahead reads 0,…

Keep in mind that the lookup in the non-clustered index is essentially unaffected by this change—it still needs three logical reads if the second row happens to reside in the same index page—which is very likely. Hence we see just one more logical read because of the second access to the heap table. This corresponds to the first figure above.

Now let’s do the same test with the table that has (=is) a clustered index:

SELECT TOP 1 * 
  FROM sales
 WHERE sale_date > '2012-05-23'
 ORDER BY sale_date
Scan count 1, logical reads 8, physical reads 0, read-ahead reads 0,…

Fetching a single row involves eight logical reads—twice as many as before. If we assume that the non-clustered index has the same tree depth, it means that the KEY Lookup (Clustered) operation triggers five logical reads per row. Let’s check that by fetching one more row:

SELECT TOP 2 * 
  FROM sales
 WHERE sale_date > '2012-05-23'
 ORDER BY sale_date
Scan count 1, logical reads 13, physical reads 0, read-ahead reads 0,…

As feared, fetching a second row triggers five more logical reads.

I’ve continued these test in 1/2/5-steps up to 100 rows to get more meaningful data:

Rows Fetched Logical Reads (Heap) Logical Reads (Clustered)
1 4 8
2 5 13
5 8 27
10 13 48
20 23 91
50 53 215
100 104 418

I’ve also fitted linear equations in the chart to see how the slope differs. The heap table matches the theoretic figures pretty closely (3 + 1 per row) but we see “only” four logical reads per row with the clustered index—not the five we would have expected from just fetching one and two rows.

Who cares about logical reads anyway

Logical reads are a fine benchmark because it yields reproducible results—independent of the current state of caches or other work done on the system. However, the above chart is still a very theoretic figure. Four times as many logical reads does not automatically mean four times as slow. In all reality you’ll have a large part of the clustered index in the cache—at least the first few B-tree levels. That reduces the impact definitively. To see how it affects the impact, I conducted another test: measuring the execution time when running the queries from the cache. Avoiding disk access is another way to get more or less reproducible figures that can be compared to each other.

Again, I’ve used 1/2/5-steps but started at 10.000 rows—selecting fewer rows was too fast for the timer’s resolution. Selecting more than 200.000 rows took extraordinarily long so that I believe the data didn’t fit into the cache anymore. Hence I stopped collecting data there.

Rows Fetched Time (Heap) Time (Clustered)
10.000 31 78
20.000 47 130
50.000 109 297
100.000 203 624
200.000 390 1232

From this test it seems that the “clustered index penalty” on the non-clustered index is more like three times as high as compared to using a heap table.

Notwithstanding these results, is it perfectly possible that the real world caching leads to a “clustered index penalty” outside the here observed range in a production system.

What was the upside of clustered indexes again?

The upside of clustered indexes is that they can deliver subsequent rows quickly when accessed directly (not via a non-clustered index). In other words, they are fast if you use the clustering key to fetch several rows. Remember that the primary key is the clustering key per default. In that case, it means fetching several rows via primary key—with a single query. Hmm. Well, you can’t do that with an equals filter. But how often do you use non-equals filters like > or < on the primary key? Sometimes, maybe, but not that often that it makes sense to optimize the physical table layout for these queries and punish all other indexes with the “clustered index penalty.” That is really insane (IMHO).

Luckily, SQL Server is quite flexible when it comes to clustered indexes. As opposed to MySQL/InnoDB, SQL Server can use any column(s) as clustering key—even non-unique ones. You can choose the clustering key so it catches the most important range scan. Remember that equals predicates (=) can also cause range scans (on non-unique columns). But beware: if you are using long columns and/or many columns as clustering key, they bloat all non-clustered indexes because each row in every non-clustered indexes contains the clustering key as reference to the primary table store. Further, SQL Server makes non-unique clustering keys automatically unique by adding an extra column, which also bloats all non-clustered indexes. Although this bloat will probably not affect the tree depth—thanks to the logarithmic growth of the B-tree—it might still hurt the cache-hit rate. That’s also why the “clustered index penalty” could be outside the range indicated by the tests above—in either way!

Even if you are able to identify the clustering key that brings the most benefit for range scans, the overhead it introduces on the non-clustered indexes can void the gains again. As I said in the intro above, it is just too darn difficult to estimate the overall impact of these effects because the clustering key affects all indexes on the table in a pretty complex way. Therefore, I’m very much in favour of using heap tables if possible and index-only scans when necessary. From this perspective, clustered indexes are just an additional space optimization in case the “clustered index penalty“ isn’t an issue—most importantly if you need only one index that is used for range scans.

Note

Some databases don’t support heap tables at all—most importantly MySQL/MariaDB with InnoDB and the Azure database.

Further there are configurations that can only use the primary key as clustering key—most importantly MySQL/MariaDB with InnoDB and Oracle index-organized tables.

Note that MySQL/MariaDB with InnoDB is on both lists. They don’t offer any alternative for what I referred to as “insane.” MyISAM being no alternative.

Concluding: How many clustered indexes can a SQL Server table have?

To conclude this article, I’d like to demonstrate why it is a bad idea to consider the clustered index as the “silver bullet” that deserves all your thoughts about performance. This demo is simple. Just take a second and think about the following question:

How many clustered indexes can a SQL Server table have?

I love to ask this question in my SQL Server performance trainings. It truly reveals the bad understanding of clustered indexes.

The first answer I get is usually is “one!” Then I ask why I can’t have a second one. Typical response: —silence—. After this article, you already know that a clustered index is not only an index, but also the primary table store. You can’t have two primary table stores. Logical, isn’t it? Next question: Do I need to have a clustered index on every table? Typical response: —silence— or “no” in a doubtful tone. I guess this is when the participants realize that I’m asking trick questions. However, you now know that SQL Server doesn’t need to have a clustered index on every table. In absence of a clustered index, SQL Server uses a heap as table store.

As per definition, the answer to the question is: “at most one.”

And now stop thinking about the clustered index as “silver bullet” and start putting the index-only scan into the focus. For that, I’ll rephrase the question slightly:

How many indexes on a SQL Server table can be queried as fast as a clustered index?

The only change to the original question is that it doesn’t focus on the clustered index as such anymore. Instead it puts your focus on the positive effect you expect from a clustering index. The point in using a clustered index is not just to have a clustered index, it is about improving performance. So, let’s focus on that.

What makes the clustered index fast is that every (direct) access is an index-only scan. So the question essentially boils down to: “how many indexes can support an index-only scan?” And the simple answer is: as many as you like. All you need to do is to add all the required columns to a non-clustered index and *BAM* using it is as fast as though it was a clustered index. That’s what SQL Server’s INCLUDE keyword of the CREATE INDEX statement is for!

Focusing on index-only scans instead of clustered indexes has several advantages:

  • You are not limited to one index. Any index can be as fast as a clustered index.

  • Adding INCLUDE columns to a non-clustered index doesn’t affect anything else than this particular index. There is no penalty that hurts all other indexes!

  • You don’t need to add all table columns to a non-clustered index to enable an index-only scan. Just add the columns that are relevant for the query you’d like to tune. That keeps the index small and can thus become even faster than a clustered index.

  • And the best part is: there is no mutual exclusion of index-only scans and clustered indexes. Index-only scans work irrespective of the table storage. You can extend non-clustered indexes for index-only scans even if there is a clustered index. That’s also an easy way to avoid paying the “clustered index penalty” on non-clustered indexes.

Because of the “clustered index penalty” the concept of the index-only scan is even more important when having a clustered index. Really, if there is something like a “silver bullet”, it is the index-only scan—not the clustered index.

If you like my way to explain things, you’ll love SQL Performance Explained.

Powered by WordPress | Theme: Aeros 2.0 by TheBuckmaker.com