May
08
2021
--

When the Earth is gone, at least the internet will still be working

The internet is now our nervous system. We are constantly streaming and buying and watching and liking, our brains locked into the global information matrix as one universal and coruscating emanation of thought and emotion.

What happens when the machine stops though?

It’s a question that E.M. Forster was intensely focused on more than a century ago in a short story called, rightly enough, “The Machine Stops,” about a human civilization connected entirely through machines that one day just turn off.

Those fears of downtime are not just science fiction anymore. Outages aren’t just missing a must-watch TikTok clip. Hospitals, law enforcement, the government, every corporation — the entire spectrum of human institutions that constitute civilization now deeply rely on connectivity to function.

So when it comes to disaster response, the world has dramatically changed. In decades past, the singular focus could be roughly summarized as rescue and mitigation — save who you can while trying to limit the scale of destruction. Today though, the highest priority is by necessity internet access, not just for citizens, but increasingly for the on-the-ground first responders who need bandwidth to protect themselves, keep abreast of their mission objectives, and have real-time ground truth on where dangers lurk and where help is needed.

While the sales cycles might be arduous as we learned in part one and the data trickles have finally turned to streams in part two, the reality is that none of that matters if there isn’t connectivity to begin with. So in part three of this series on the future of technology and disaster response, we’re going to analyze the changing nature of bandwidth and connectivity and how they intersect with emergencies, taking a look at how telcos are creating resilience in their networks while defending against climate change, how first responders are integrating connectivity into their operations, and finally, exploring how new technologies like 5G and satellite internet will affect these critical activities.

Wireless resilience as the world burns

Climate change is inducing more intense weather patterns all around the world, creating second- and third-order effects for industries that rely on environmental stability for operations. Few industries have to be as dynamic to the changing context as telecom companies, whose wired and wireless infrastructure is regularly buffeted by severe storms. Resiliency of these networks isn’t just needed for consumers — it’s absolutely necessary for the very responders trying to mitigate disasters and get the network back up in the first place.

Unsurprisingly, no issue looms larger for telcos than access to power — no juice, no bars. So all three of America’s major telcos — Verizon (which owns TechCrunch’s parent company Verizon Media, although not for much longer), AT&T and T-Mobile — have had to dramatically scale up their resiliency efforts in recent years to compensate both for the demand for wireless and the growing damage wrought by weather.

Jay Naillon, senior director of national technology service operations strategy at T-Mobile, said that the company has made resilience a key part of its network buildout in recent years, with investments in generators at cell towers that can be relied upon when the grid cannot. In “areas that have been hit by hurricanes or places that have fragile grids … that is where we have invested most of our fixed assets,” he said.

Like all three telcos, T-Mobile pre-deploys equipment in anticipation for disruptions. So when a hurricane begins to swirl in the Atlantic Ocean, the company will strategically fly in portable generators and mobile cell towers in anticipation of potential outages. “We look at storm forecasts for the year,” Naillon explained, and do “lots of preventative planning.” They also work with emergency managers and “run through various drills with them and respond and collaborate effectively with them” to determine which parts of the network are most at risk for damage in an emergency. Last year, the company partnered with StormGeo to accurately predict weather events.

Predictive AI for disasters is also a critical need for AT&T. Jason Porter, who leads public sector and the company’s FirstNet first-responder network, said that AT&T teamed up with Argonne National Laboratory to create a climate-change analysis tool to evaluate the siting of its cell towers and how they will weather the next 30 years of “floods, hurricanes, droughts and wildfires.” “We redesigned our buildout … based on what our algorithms told us would come,” he said, and the company has been elevating vulnerable cell towers four to eight feet high on “stilts” to improve their resiliency to at least some weather events. That “gave ourselves some additional buffer.”

AT&T has also had to manage the growing complexity of creating reliability with the chaos of a climate-change-induced world. In recent years, “we quickly realized that many of our deployments were due to weather-related events,” and the company has been “very focused on expanding our generator coverage over the past few years,” Porter said. It’s also been very focused on building out its portable infrastructure. “We essentially deploy entire data centers on trucks so that we can stand up essentially a central office,” he said, empathizing that the company’s national disaster recovery team responded to thousands of events last year.

Particularly on its FirstNet service, AT&T has pioneered two new technologies to try to get bandwidth to disaster-hit regions faster. First, it has invested in drones to offer wireless services from the sky. After Hurricane Laura hit Louisiana last year with record-setting winds, our “cell towers were twisted up like recycled aluminum cans … so we needed to deploy a sustainable solution,” Porter described. So the company deployed what it dubs the FirstNet One — a “dirigible” that “can cover twice the cell coverage range of a cell tower on a truck, and it can stay up for literally weeks, refuel in less than an hour and go back up — so long-term, sustainable coverage,” he said.

AT&T’s FirstNet One dirigible to offer internet access from the air for first responders. Image Credits: AT&T/FirstNet

Secondly, the company has been building out what it calls FirstNet MegaRange — a set of high-powered wireless equipment that it announced earlier this year that can deploy signals from miles away, say from a ship moored off a coast, to deliver reliable connectivity to first responders in the hardest-hit disaster zones.

As the internet has absorbed more of daily life, the norms for network resilience have become ever more exacting. Small outages can disrupt not just a first responder, but a child taking virtual classes and a doctor conducting remote surgery. From fixed and portable generators to rapid-deployment mobile cell towers and dirigibles, telcos are investing major resources to keep their networks running continuously.

Yet, these initiatives are ultimately costs borne by telcos increasingly confronting a world burning up. Across conversations with all three telcos and others in the disaster response space, there was a general sense that utilities just increasingly have to self-insulate themselves in a climate-changed world. For instance, cell towers need their own generators because — as we saw with Texas earlier this year — even the power grid itself can’t be guaranteed to be there. Critical applications need to have offline capabilities, since internet outages can’t always be prevented. The machine runs, but the machine stops, too.

The trend lines on the frontlines are data lines

While we may rely on connectivity in our daily lives as consumers, disaster responders have been much more hesitant to fully transition to connected services. It is precisely in the middle of a tornado and the cell tower is down that you realize a printed map might have been nice to have. Paper, pens, compasses — the old staples of survival flicks remain just as important in the field today as they were decades ago.

Yet, the power of software and connectivity to improve emergency response has forced a rethinking of field communications and how deeply technology is integrated on the ground. Data from the frontlines is extremely useful, and if it can be transmitted, dramatically improves the ability of operations planners to respond safely and efficiently.

Both AT&T and Verizon have made large investments in directly servicing the unique needs of the first responder community, with AT&T in particular gaining prominence with its FirstNet network, which it exclusively operates through a public-private partnership with the Department of Commerce’s First Responder Network Authority. The government offered a special spectrum license to the FirstNet authority in Band 14 in exchange for the buildout of a responder-exclusive network, a key recommendation of the 9/11 Commission, which found that first responders couldn’t communicate with each other on the day of those deadly terrorist attacks. Now, Porter of AT&T says that the company’s buildout is “90% complete” and is approaching 3 million square miles of coverage.

Why so much attention on first responders? The telcos are investing here because in many ways, the first responders are on the frontiers of technology. They need edge computing, AI/ML rapid decision-making, the bandwidth and latency of 5G (which we will get to in a bit), high reliability, and in general, are fairly profitable customers to boot. In other words, what first responders need today are what consumers in general are going to want tomorrow.

Cory Davis, director of public safety strategy and crisis response at Verizon, explained that “more than ever, first responders are relying on technology to go out there and save lives.” His counterpart, Nick Nilan, who leads product management for the public sector, said that “when we became Verizon, it was really about voice [and] what’s changed over the last five [years] is the importance of data.” He brings attention to tools for situational awareness, mapping, and more that are a becoming standard in the field. Everything first responders do “comes back to the network — do you have the coverage where you need it, do you have the network access when something happens?”

The challenge for the telcos is that we all want access to that network when catastrophe strikes, which is precisely when network resources are most scarce. The first responder trying to communicate with their team on the ground or their operations center is inevitably competing with a citizen letting friends know they are safe — or perhaps just watching the latest episode of a TV show in their vehicle as they are fleeing the evacuation zone.

That competition is the argument for a completely segmented network like FirstNet, which has its own dedicated spectrum with devices that can only be used by first responders. “With remote learning, remote work and general congestion,” Porter said, telcos and other bandwidth providers were overwhelmed with consumer demand. “Thankfully we saw through FirstNet … clearing that 20 MHz of spectrum for first responders” helped keep the lines clear for high-priority communications.

FirstNet’s big emphasis is on its dedicated spectrum, but that’s just one component of a larger strategy to give first responders always-on and ready access to wireless services. AT&T and Verizon have made prioritization and preemption key operational components of their networks in recent years. Prioritization gives public safety users better access to the network, while preemption can include actively kicking off lower-priority consumers from the network to ensure first responders have immediate access.

Nilan of Verizon said, “The network is built for everybody … but once we start thinking about who absolutely needs access to the network at a period of time, we prioritize our first responders.” Verizon has prioritization, preemption, and now virtual segmentation — “we separate their traffic from consumer traffic” so that first responders don’t have to compete if bandwidth is limited in the middle of a disaster. He noted that all three approaches have been enabled since 2018, and Verizon’s suite of bandwidth and software for first responders comes under the newly christened Verizon Frontline brand that launched in March.

With increased bandwidth reliability, first responders are increasingly connected in ways that even a decade ago would have been unfathomable. Tablets, sensors, connected devices and tools — equipment that would have been manual are now increasingly digital.

That opens up a wealth of possibilities now that the infrastructure is established. My interview subjects suggested applications as diverse as the decentralized coordination of response team movements through GPS and 5G; real-time updated maps that offer up-to-date risk analysis of how a disaster might progress; pathfinding for evacuees that’s updated as routes fluctuate; AI damage assessments even before the recovery process begins; and much, much more. In fact, when it comes to the ferment of the imagination, many of those possibilities will finally be realized in the coming years — when they have only ever been marketing-speak and technical promises in the past.

Five, Gee

We’ve been hearing about 5G for years now, and even 6G every once in a while just to cause reporters heart attacks, but what does 5G even mean in the context of disaster response? After years of speculation, we are finally starting to get answers.

Naillon of T-Mobile noted that the biggest benefit of 5G is that it “allows us to have greater coverage” particularly given the low-band spectrum that the standard partially uses. That said, “As far as applications — we are not really there at that point from an emergency response perspective,” he said.

Meanwhile, Porter of AT&T said that “the beauty of 5G that we have seen there is less about the speed and more about the latency.” Consumers have often seen marketing around voluminous bandwidths, but in the first-responder world, latency and edge computing tends to be the most desirable features. For instance, devices can relay video to each other on the frontlines, without necessarily needing a backhaul to the main wireless network. On-board processing of image data could allow for rapid decision-making in environments where seconds can be vital to the success of a mission.

That flexibility is allowing for many new applications in disaster response, and “we are seeing some amazing use cases coming out of our 5G deployments [and] we have launched some of our pilots with the [Department of Defense],” Porter said. He offered an example of “robotic dogs to go and do bomb dismantling or inspecting and recovery.”

Verizon has made innovating on new applications a strategic goal, launching a 5G First Responders Lab dedicated to guiding a new generation of startups to build at this crossroads. Nilan of Verizon said that the incubator has had more than 20 companies across four different cohorts, working on everything from virtual reality training environments to AR applications that allow firefighters to “see through walls.” His colleague Davis said that “artificial intelligence is going to continue to get better and better and better.”

Blueforce is a company that went through the first cohort of the Lab. The company uses 5G to connect sensors and devices together to allow first responders to make the best decisions they can with the most up-to-date data. Michael Helfrich, founder and CEO, said that “because of these new networks … commanders are able to leave the vehicle and go into the field and get the same fidelity” of information that they normally would have to be in a command center to receive. He noted that in addition to classic user interfaces, the company is exploring other ways of presenting information to responders. “They don’t have to look at a screen anymore, and [we’re] exploring different cognitive models like audio, vibration and heads-up displays.”

5G will offer many new ways to improve emergency responses, but that doesn’t mean that our current 4G networks will just disappear. Davis said that many sensors in the field don’t need the kind of latency or bandwidth that 5G offers. “LTE is going to be around for many, many more years,” he said, pointing to the hardware and applications taking advantage of LTE-M standards for Internet of Things (IoT) devices as a key development for the future here.

Michael Martin of emergency response data platform RapidSOS said that “it does feel like there is renewed energy to solve real problems,” in the disaster response market, which he dubbed the “Elon Musk effect.” And that effect definitely does exist when it comes to connectivity, where SpaceX’s satellite bandwidth project Starlink comes into play.

The Future of Technology and Disaster Response

Satellite uplinks have historically had horrific latency and bandwidth constraints, making them difficult to use in disaster contexts. Furthermore, depending on the particular type of disaster, satellite uplinks can be astonishingly challenging to setup given the ground environment. Starlink promises to shatter all of those barriers — easier connections, fat pipes, low latencies and a global footprint that would be the envy of any first responder globally. Its network is still under active development, so it is difficult to foresee today precisely what its impact will be on the disaster response market, but it’s an offering to watch closely in the years ahead, because it has the potential to completely upend the way we respond to disasters this century if its promises pan out.

Yet, even if we discount Starlink, the change coming this decade in emergency response represents a complete revolution. The depth and resilience of connectivity is changing the equation for first responders from complete reliance on antiquated tools to an embrace of the future of digital computing. The machine is no longer stoppable.

Dec
08
2020
--

AWS expands on SageMaker capabilities with end-to-end features for machine learning

Nearly three years after it was first launched, Amazon Web Services’ SageMaker platform has gotten a significant upgrade in the form of new features, making it easier for developers to automate and scale each step of the process to build new automation and machine learning capabilities, the company said.

As machine learning moves into the mainstream, business units across organizations will find applications for automation, and AWS is trying to make the development of those bespoke applications easier for its customers.

“One of the best parts of having such a widely adopted service like SageMaker is that we get lots of customer suggestions which fuel our next set of deliverables,” said AWS vice president of machine learning, Swami Sivasubramanian. “Today, we are announcing a set of tools for Amazon SageMaker that makes it much easier for developers to build end-to-end machine learning pipelines to prepare, build, train, explain, inspect, monitor, debug and run custom machine learning models with greater visibility, explainability and automation at scale.”

Already companies like 3M, ADP, AstraZeneca, Avis, Bayer, Capital One, Cerner, Domino’s Pizza, Fidelity Investments, Lenovo, Lyft, T-Mobile and Thomson Reuters are using SageMaker tools in their own operations, according to AWS.

The company’s new products include Amazon SageMaker Data Wrangler, which the company said was providing a way to normalize data from disparate sources so the data is consistently easy to use. Data Wrangler can also ease the process of grouping disparate data sources into features to highlight certain types of data. The Data Wrangler tool contains more than 300 built-in data transformers that can help customers normalize, transform and combine features without having to write any code.

Amazon also unveiled the Feature Store, which allows customers to create repositories that make it easier to store, update, retrieve and share machine learning features for training and inference.

Another new tool that Amazon Web Services touted was Pipelines, its workflow management and automation toolkit. The Pipelines tech is designed to provide orchestration and automation features not dissimilar from traditional programming. Using pipelines, developers can define each step of an end-to-end machine learning workflow, the company said in a statement. Developers can use the tools to re-run an end-to-end workflow from SageMaker Studio using the same settings to get the same model every time, or they can re-run the workflow with new data to update their models.

To address the longstanding issues with data bias in artificial intelligence and machine learning models, Amazon launched SageMaker Clarify. First announced today, this tool allegedly provides bias detection across the machine learning workflow, so developers can build with an eye toward better transparency on how models were set up. There are open-source tools that can do these tests, Amazon acknowledged, but the tools are manual and require a lot of lifting from developers, according to the company.

Other products designed to simplify the machine learning application development process include SageMaker Debugger, which enables developers to train models faster by monitoring system resource utilization and alerting developers to potential bottlenecks; Distributed Training, which makes it possible to train large, complex, deep learning models faster than current approaches by automatically splitting data across multiple GPUs to accelerate training times; and SageMaker Edge Manager, a machine learning model management tool for edge devices, which allows developers to optimize, secure, monitor and manage models deployed on fleets of edge devices.

Last but not least, Amazon unveiled SageMaker JumpStart, which provides developers with a searchable interface to find algorithms and sample notebooks so they can get started on their machine learning journey. The company said it would give developers new to machine learning the option to select several pre-built machine learning solutions and deploy them into SageMaker environments.

Sep
22
2020
--

Microsoft brings new robotic process automation features to its Power Platform

Earlier this year, Microsoft acquired Softomotive, a player in the low-code robotic process automation space with a focus on Windows. Today, at its Ignite conference, the company is launching Power Automate Desktop, a new application based on Softomotive’s technology that lets anyone automate desktop workflows without needing to program.

“The big idea of Power Platform is that we want to go make it so development is accessible to everybody,” Charles Lamanna, Microsoft’s corporate VP for its low-code platform, told me. “And development includes understanding and reporting on your data with Power BI, building web and mobile applications with Power Apps, automating your tasks — whether it’s through robotic process automation or workflow automation — with Power Automate, or building chatbots and chat-based experiences with Power Virtual Agent.”

Power Automate already allowed users to connect web-based applications, similar to Zapier and IFTTT, but the company also launched a browser extension late last year to help users connect native system components to Power Automate. Now, with the integration of the Softomotive technology and the launch of this new low-code Windows application, it’s taking this integration into the native Windows user interface one step further.

“Everything still runs in the cloud and still connects to the cloud, but you now have a rich desktop application to author and record your UI automations,” Lamanna explained. He likened it to an “ultimate connector,” noting that the “ultimate API is just the UI.”

He also stressed that the new app feels like any other modern Office app, like Outlook (which is getting a new Mac version today, by the way) or Word. And like the modern versions of those apps, Power Automate Desktop derives a lot of its power from being connected to the cloud.

It’s also worth noting that Power Automate isn’t just a platform for automating simple two or three-step processes (like sending you a text message when your boss emails you), but also for multistep, business-critical workflows. T-Mobile, for example, is using the platform to automate some of the integration processes between its systems and Sprint.

Lamanna noted that for some large enterprises, adopting these kinds of low-code services necessitates a bit of a culture shift. IT still needs to have some insights into how these tools are used, after all, to ensure that data is kept safe, for example.

Another new feature the company announced today is an integration between the Power Platform and GitHub, which is now in public preview. The idea here is to give developers the ability to create their own software lifecycle workflows. “One of the core ideas of Power Platform is that it’s low code,” Lamanna said. “So it’s built first for business users, business analysts, not the classical developers. But pro devs are welcome. The saying I have is: we’re throwing a party for business users, but pro devs are also invited to the party.” But to get them onto the platform, the team wants to meet them where they are and let them use the tools they already use — and that’s GitHub (and Visual Studio and Visual Studio Code).

Sep
16
2020
--

Pure Storage acquires data service platform Portworx for $370M

Pure Storage, the public enterprise data storage company, today announced that it has acquired Portworx, a well-funded startup that provides a cloud-native storage and data-management platform based on Kubernetes, for $370 million in cash. This marks Pure Storage’s largest acquisition to date and shows how important this market for multicloud data services has become.

Current Portworx enterprise customers include the likes of Carrefour, Comcast, GE Digital, Kroger, Lufthansa, and T-Mobile. At the core of the service is its ability to help users migrate their data and create backups. It creates a storage layer that allows developers to then access that data, no matter where it resides.

Pure Storage will use Portworx’s technology to expand its hybrid and multicloud services and provide Kubernetes -based data services across clouds.

Image Credits: Portworx

“I’m tremendously proud of what we’ve built at Portworx: An unparalleled data services platform for customers running mission-critical applications in hybrid and multicloud environments,” said Portworx CEO Murli Thirumale. “The traction and growth we see in our business daily shows that containers and Kubernetes are fundamental to the next-generation application architecture and thus competitiveness. We are excited for the accelerated growth and customer impact we will be able to achieve as a part of Pure.”

When the company raised its Series C round last year, Thirumale told me that Portworx had expanded its customer base by over 100% and its bookings increased by 376 from 2018 to 2019.

“As forward-thinking enterprises adopt cloud-native strategies to advance their business, we are thrilled to have the Portworx team and their groundbreaking technology joining us at Pure to expand our success in delivering multicloud data services for Kubernetes,” said Charles Giancarlo, chairman and CEO of Pure Storage. “This acquisition marks a significant milestone in expanding our Modern Data Experience to cover traditional and cloud native applications alike.”

Mar
03
2020
--

Datastax acquires The Last Pickle

Data management company Datastax, one of the largest contributors to the Apache Cassandra project, today announced that it has acquired The Last Pickle (and no, I don’t know what’s up with that name either), a New Zealand-based Cassandra consulting and services firm that’s behind a number of popular open-source tools for the distributed NoSQL database.

As Datastax Chief Strategy Officer Sam Ramji, who you may remember from his recent tenure at Apigee, the Cloud Foundry Foundation, Google and Autodesk, told me, The Last Pickle is one of the premier Apache Cassandra consulting and services companies. The team there has been building Cassandra-based open source solutions for the likes of Spotify, T Mobile and AT&T since it was founded back in 2012. And while The Last Pickle is based in New Zealand, the company has engineers all over the world that do the heavy lifting and help these companies successfully implement the Cassandra database technology.

It’s worth mentioning that Last Pickle CEO Aaron Morton first discovered Cassandra when he worked for WETA Digital on the special effects for Avatar, where the team used Cassandra to allow the VFX artists to store their data.

“There’s two parts to what they do,” Ramji explained. “One is the very visible consulting, which has led them to become world experts in the operation of Cassandra. So as we automate Cassandra and as we improve the operability of the project with enterprises, their embodied wisdom about how to operate and scale Apache Cassandra is as good as it gets — the best in the world.” And The Last Pickle’s experience in building systems with tens of thousands of nodes — and the challenges that its customers face — is something Datastax can then offer to its customers as well.

And Datastax, of course, also plans to productize The Last Pickle’s open-source tools like the automated repair tool Reaper and the Medusa backup and restore system.

As both Ramji and Datastax VP of Engineering Josh McKenzie stressed, Cassandra has seen a lot of commercial development in recent years, with the likes of AWS now offering a managed Cassandra service, for example, but there wasn’t all that much hype around the project anymore. But they argue that’s a good thing. Now that it is over ten years old, Cassandra has been battle-hardened. For the last ten years, Ramji argues, the industry tried to figure out what the de factor standard for scale-out computing should be. By 2019, it became clear that Kubernetes was the answer to that.

“This next decade is about what is the de facto standard for scale-out data? We think that’s got certain affordances, certain structural needs and we think that the decades that Cassandra has spent getting harden puts it in a position to be data for that wave.”

McKenzie also noted that Cassandra provides users with a number of built-in features like support for mutiple data centers and geo-replication, rolling updates and live scaling, as well as wide support across programming languages, give it a number of advantages over competing databases.

“It’s easy to forget how much Cassandra gives you for free just based on its architecture,” he said. “Losing the power in an entire datacenter, upgrading the version of the database, hardware failing every day? No problem. The cluster is 100 percent always still up and available. The tooling and expertise of The Last Pickle really help bring all this distributed and resilient power into the hands of the masses.”

The two companies did not disclose the price of the acquisition.

Oct
18
2018
--

Twilio launches a new SIM card and narrowband dev kit for IoT developers

Twilio is hosting its Signal developer conference in San Francisco this week. Yesterday was all about bots and taking payments over the phone; today is all about IoT. The company is launching two new (but related) products today that will make it easier for IoT developers to connect their devices. The first is the Global Super SIM that offers global connectivity management through the networks of Twilio’s partners. The second is Twilio Narrowband, which, in cooperation with T-Mobile, offers a full software and hardware kit for building low-bandwidth IoT solutions and the narrowband network to connect them.

Twilio also announced that it is expanding its wireless network partnerships with the addition of Singtel, Telefonica and Three Group. Unsurprisingly, those are also the partners that make the company’s Super SIM project possible.

The Super SIM, which is currently in private preview and will launch in public beta in the spring of 2019, provides developers with a global network that lets them deploy and manage their IoT devices anywhere (assuming there is a cell connection or other internet connectivity, of course). The Super SIM gives developers the ability to choose the network they want to use or to let Twilio pick the defaults based on the local networks.

Twilio Narrowband is a slightly different solution. Its focus right now is on the U.S., where T-Mobile rolled out its Narrowband IoT network earlier this year. As the name implies, this is about connecting low-bandwidth devices that only need to send out small data packets like timestamps, GPS coordinates or status updates. Twilio Narrowband sits on top of this, using Twilio’s Programmable Wireless and SIM card. It then adds an IoT developer kit with an Arduino-based development board and the standard Grove sensors on top of that, as well as a T-Mobile-certified hardware module for connecting to the narrowband network. To program that all, Twilio is launching an SDK for handling network registrations and optimizing the communication between the devices and the cloud.

The narrowband service will launch as a beta in early 2019 and offer three pricing plans: a developer plan for $2/month, an annual production plan for $10/year or $5/year at scale, and a five-year plan for $8/year or $4/year at scale.

Powered by WordPress | Theme: Aeros 2.0 by TheBuckmaker.com